{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"相变材料(PCM)是解决能源供需矛盾的一类新型的清洁廉价能源;硬脂酸硬脂酰胺均为廉价易得的化工产品.本文以DSC测试分析了这两种物质及其混合体系的相变过程,并分别绘出了加热、冷却过程的固-液相图.相图显示该两种物质有一明显的共晶线.实验测得其共晶点组成(硬脂酸质量百分数)在0.75,共晶相变温度在61.20℃,相变焓160.916J/g;其低共熔混合物的组成及温度与理论计算值较为接近.实验测得硬脂酸质量比为0.75时的二元体系具有较高的相变焓和较窄的相变峰,无毒、无腐蚀性,是比相同熔点的石蜡更好的相变材料.","authors":[{"authorName":"李玉蓉","id":"033b2d43-acce-45b7-b1e1-0b1e1d625d81","originalAuthorName":"李玉蓉"},{"authorName":"焦庆影","id":"8c256d8b-338a-45cb-92b7-d572b07992af","originalAuthorName":"焦庆影"},{"authorName":"夏定国","id":"9f5cf3af-c96e-429d-ba57-6ce5c5ede8ca","originalAuthorName":"夏定国"}],"doi":"","fpage":"2022","id":"d867872a-21bb-40d6-9abf-b96c8f7a0706","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"281935ee-0210-4963-a49f-0b60eb10f1b1","keyword":"相变材料","originalKeyword":"相变材料"},{"id":"fe686463-2f99-4bf8-9ca1-6fc063252fb0","keyword":"储能","originalKeyword":"储能"},{"id":"e441a374-731d-4789-8587-db40717aa2c5","keyword":"共晶","originalKeyword":"共晶"},{"id":"06f50c80-251f-4607-b009-ea11ab2c090f","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"b34cb943-648c-40c2-996a-e3c0026169c0","keyword":"硬脂酰胺","originalKeyword":"硬脂酰胺"}],"language":"zh","publisherId":"gncl2004z1562","title":"硬脂酸-硬脂酰胺共晶储能材料","volume":"35","year":"2004"},{"abstractinfo":"在293~393 K温度范围内,分别采用红外光谱、二阶导数红外光谱、四阶导数红外光谱及去卷积红外光谱测定硬脂酸亚甲基变角振动(δCH)频率,并进一步研究温度对硬脂酸分子结构的影响.结果表明:硬脂酸固体δCH2在1472 cm-1和1464 cm-1频率处分裂成双峰,随着测定温度的升高,裂分双峰逐渐消失,而348~353 K是硬脂酸δCH裂分双峰消失的临界温度.通过研究硬脂酸δCH2裂分双峰间距离,进一步考察温度对硬脂酸分子间作用力的影响.实验发现:随着测定温度的升高,硬脂酸δCH2裂分双峰间距离由9 cm-1减小到6 cm-1,而对应硬脂酸分子间作用力不断减弱.","authors":[{"authorName":"于宏伟","id":"11c6e556-1f63-4d23-b04a-2e75cf1c1662","originalAuthorName":"于宏伟"},{"authorName":"韩卫荣","id":"35985f59-5830-46b5-bf4d-d54e8e69dec5","originalAuthorName":"韩卫荣"},{"authorName":"孙凤","id":"e1aca9d7-f4bb-418b-baac-b48f70831d97","originalAuthorName":"孙凤"},{"authorName":"秦婷","id":"c8a2d5d3-8ca6-4d97-8637-f0b055b59f91","originalAuthorName":"秦婷"},{"authorName":"毕丁文","id":"0e9673b8-de3f-43aa-91dd-006d2258db6c","originalAuthorName":"毕丁文"},{"authorName":"杨璐","id":"c04c39e0-1a42-41b8-a220-c8a0bc5b5e74","originalAuthorName":"杨璐"},{"authorName":"魏田田","id":"0524b7e6-8456-4893-9004-6361bce0c017","originalAuthorName":"魏田田"},{"authorName":"张丽藏","id":"498bc9b2-8d11-446a-89eb-654d1d3b702d","originalAuthorName":"张丽藏"}],"doi":"","fpage":"72","id":"b27000dc-942c-45f0-87b7-ff2e948d234c","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"154bb1dc-68ec-4cd4-86dd-5460067629c7","keyword":"红外光谱","originalKeyword":"红外光谱"},{"id":"36027e81-d29b-4a7d-b42c-e6c3a7383a5d","keyword":"二阶导数红外光谱","originalKeyword":"二阶导数红外光谱"},{"id":"500b3c95-0afd-4968-98ed-86043bd96800","keyword":"四阶导数红外光谱","originalKeyword":"四阶导数红外光谱"},{"id":"593d56b2-a121-4734-aea4-74a0b69d3409","keyword":"去卷积红外光谱","originalKeyword":"去卷积红外光谱"},{"id":"7f2e7cae-8da3-4624-a4d6-74cba0c28c84","keyword":"硬脂酸","originalKeyword":"硬脂酸"}],"language":"zh","publisherId":"cldb201322020","title":"硬脂酸亚甲基变角振动变温FT-IR光谱研究","volume":"27","year":"2013"},{"abstractinfo":"以硬脂酸为改性剂、甘油为增塑剂,分别采用溶液浇铸法、高温模压法制备了小麦醇溶蛋白膜,考察了硬脂酸改性对醇溶蛋白膜力学性能、动态力学性能及吸水与透湿性能的影响.结果表明,模压膜的性能明显优于浇铸膜.随硬脂酸含量增大,模压膜弹性模量增大,吸水率略有降低,而透湿率明显降低.模压膜呈现相分离结构,硬脂酸改性可降低蛋白质富集相的非均质程度,并使甘油富集相的玻璃化转变温度向高温移动.","authors":[{"authorName":"李凌芳","id":"e6978e51-b702-4b74-95ef-56c361ab3f87","originalAuthorName":"李凌芳"},{"authorName":"宋义虎","id":"8c68a58f-946b-4b6b-9167-0d36fe52d9ee","originalAuthorName":"宋义虎"},{"authorName":"郑强","id":"18f8c4ad-74b4-45bd-abd2-b186fb1d0809","originalAuthorName":"郑强"}],"doi":"","fpage":"656","id":"9846d36a-9b72-4f89-9337-f4986a5e8e3a","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"73ac4883-7a8b-447b-a8a8-4c1275d1d298","keyword":"小麦醇溶蛋白","originalKeyword":"小麦醇溶蛋白"},{"id":"c066a24a-4cc7-4bd1-a8db-cd95e9c243d7","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"0fd17e6c-416a-4533-993f-751f880676e9","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"bb9a426f-af8a-43f8-bbea-c6811eee311d","keyword":"吸湿性","originalKeyword":"吸湿性"}],"language":"zh","publisherId":"gncl200804037","title":"硬脂酸改性小麦醇溶蛋白膜的制备与性能研究","volume":"39","year":"2008"},{"abstractinfo":"应用自组装技术在Cu(OH)2纳米柱/CuO微花阶层结构表面制备硬脂酸自组装膜(SAM),运用电化学阻抗谱探讨了形成自组装膜的较佳浓度和自组装时间,通过极化曲线和循环伏安法考察了硬脂酸自组装膜在0.1 mol/L NaCl溶液中对铜电极的缓蚀性能.结果表明,当CuO/Cu(OH)2电极在8 mmol/L硬脂酸溶液中自组装24 h时,得到的硬脂酸自组装膜能显著提高铜电极的耐蚀性;与裸铜电极相比,SAM-CuO/Cu(OH)2电极的腐蚀电流降低了2个数量级,缓蚀效率达到98.81%.","authors":[{"authorName":"余相仁","id":"9e9bc85b-432c-415f-b350-75323859a5dc","originalAuthorName":"余相仁"},{"authorName":"李淑英","id":"b893021f-4c55-42b9-a05f-19256611d0dc","originalAuthorName":"李淑英"},{"authorName":"范洪强","id":"835a7218-b14b-4e0d-ad79-f97ab95cc02d","originalAuthorName":"范洪强"},{"authorName":"钱备","id":"6cc08161-13ec-4772-9d8a-20f2e3380544","originalAuthorName":"钱备"},{"authorName":"张琳","id":"fdda9ec2-9a56-4061-9ac1-2d6f7319c4c8","originalAuthorName":"张琳"}],"doi":"","fpage":"45","id":"aac86ee6-11ee-44c7-812b-75cdd5fea4f0","issue":"10","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"dc8fa02c-486c-495e-aedf-55188709e861","keyword":"铜电极","originalKeyword":"铜电极"},{"id":"8d437de1-147d-42ac-adbd-5dec9644e252","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"142f64e0-9aa8-475b-a129-afaef0a2ec4d","keyword":"自组装膜","originalKeyword":"自组装膜"},{"id":"236f69d8-a088-44a0-942f-a7d454139bb3","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"},{"id":"f896e1f6-7328-4448-9592-dd4f825c2d2a","keyword":"极化曲线","originalKeyword":"极化曲线"}],"language":"zh","publisherId":"ddyts201110012","title":"铜表面硬脂酸自组装膜的制备及耐腐蚀性能","volume":"30","year":"2011"},{"abstractinfo":"用二甲基亚砜取代法制备了硬脂酸/埃洛石插层复合相变材料.借助于X射线衍射、综合热分析、红外光谱和扫描电子显微镜等方法分析了复合相变材料的插层效果、插层机理及热性能.结果表明:硬脂酸/埃洛石插层复合物中,埃洛石的层间距由0.74 nm增大到3.92 nm,插层率达到了95.4%,埃洛石的内表面羟基与硬脂酸的羰基形成了氢键,其外层硅氧面上的氧与硬脂酸的羟基形成了氢键,复合相变材料的相变温度为50.3℃,相变焓为103.9 J/g,经过200次冷热循环后仍具有较好的兼容性、热稳定性及化学稳定性.","authors":[{"authorName":"席国喜","id":"ec60690a-35b6-4975-98c8-b15ee72b63dc","originalAuthorName":"席国喜"},{"authorName":"路宽","id":"678b05e6-a499-49fd-873a-76875b9c3f26","originalAuthorName":"路宽"}],"doi":"","fpage":"1155","id":"16351e8e-3882-4cdd-9d6f-a150bbb56571","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"8e780e0b-9799-4f49-8f7e-904caf09bd14","keyword":"埃洛石","originalKeyword":"埃洛石"},{"id":"e3bc252c-3838-4d86-b8d1-ad1db2285d34","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"05553e21-0b70-4d80-9a5d-2a6eda231e36","keyword":"插层","originalKeyword":"插层"},{"id":"ecabb0d3-a630-42e6-a063-ce80a959eff8","keyword":"复合相变材料","originalKeyword":"复合相变材料"}],"language":"zh","publisherId":"gsytb201105035","title":"硬脂酸/埃洛石插层复合相变材料的制备及其性能研究","volume":"30","year":"2011"},{"abstractinfo":"选用硬脂酸作为改性剂同时施加超声处理对层状硅酸钠进行改性,利用均匀设计试验方法,通过沉降试验和分散性试验研究了改性温度、改性时间以及改性荆与层状硅酸钠质量比对改性效果的影响,采用光学显微镜、红外光谱、X射线衍射仪和激光粒度分析仪对改性层状硅酸钠进行了表征.结果表明:最佳的改性条件为改性温度80℃,硬脂酸与层状硅酸钠的质量比为0.8,改性时间30 min;改性层状硅酸钠在500SN基础油中具有良好的分散稳定性,团聚现象明显减少,粒径减小;硬脂酸在层状硅酸钠表面既发生了化学吸附,又发生了物理吸附;改性后层状硅酸钠的物相组成并没发生变化.","authors":[{"authorName":"单长兵","id":"5f081fed-a2c5-4513-bb90-f027183cc7c4","originalAuthorName":"单长兵"},{"authorName":"陈国需","id":"c052a816-de4c-402b-9160-1a5a6822a391","originalAuthorName":"陈国需"},{"authorName":"李华峰","id":"2ffe7c66-f5d4-444d-b2b5-5d87d3c592cd","originalAuthorName":"李华峰"},{"authorName":"董晋湘","id":"e03e5139-760f-48d6-8340-898a88a59fb4","originalAuthorName":"董晋湘"}],"doi":"","fpage":"86","id":"2dfc4a79-3cfa-4299-8e21-2ebe37df633b","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3f75cb61-07ce-4b61-a6b3-d324bb040303","keyword":"层状硅酸钠","originalKeyword":"层状硅酸钠"},{"id":"f0fdc1b1-2111-4209-a3ba-36b9ba33c0eb","keyword":"改性","originalKeyword":"改性"},{"id":"93be1582-6ee8-4e06-9934-290fb7370f4f","keyword":"均匀设计","originalKeyword":"均匀设计"},{"id":"8b5161b7-4ef4-4fa0-b4fe-b2cabe4f6fe4","keyword":"硬脂酸","originalKeyword":"硬脂酸"}],"language":"zh","publisherId":"jxgccl200903024","title":"用硬脂酸同时施加超声处理对层状硅酸钠进行改性","volume":"33","year":"2009"},{"abstractinfo":"采用硬脂酸对镁合金铈钒转化膜进行改性处理.利用扫描电镜、接触角测试仪、X射线能谱仪和红外光谱仪对改性膜层的微观结构、表面润湿性能以及化学组成进行分析,并通过防黏附和电化学实验研究膜层的自清洁行为以及耐腐蚀性能.结果表明:硬脂酸对铈钒转化膜的改性处理,不仅对转化膜的裂纹起到修补作用,并且通过接枝硬脂酸的疏水长链使改性膜层表面转化为超疏水性.8h常温浸泡后得到的改性膜层,表面接触角达154.6°,并表现出良好的自清洁性;耐腐蚀能力与原铈钒转化膜相比,膜层电阻Rcoat提高25倍,自腐蚀电流密度icurr降低2个数量级,其耐蚀性能得到显著提升.","authors":[{"authorName":"蒋晓","id":"4a0c056f-f6cd-4d61-85e9-b79f967eacd7","originalAuthorName":"蒋晓"},{"authorName":"郭瑞光","id":"840245e2-c1d5-41da-93a4-c09670571346","originalAuthorName":"郭瑞光"},{"authorName":"唐长斌","id":"eac55fb0-6bdd-4300-812d-b997c8311fe2","originalAuthorName":"唐长斌"}],"doi":"10.11868/j.issn.1001-4381.2016.000648","fpage":"13","id":"dbbc6845-8ee9-4dc8-93d0-d8e347b61569","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0bc19d94-6d71-484e-9e63-26529c363c2b","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"7f3d4df9-193f-4205-b4fa-54c2831c7a19","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"8442c3c1-1fb5-4c6e-8a07-6f7f8eb0a728","keyword":"转化膜","originalKeyword":"转化膜"},{"id":"8381e52e-488d-4473-81a4-110c33347110","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"489f98d2-e0f9-4455-82ca-4bd4c9b17ab3","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clgc201705003","title":"硬脂酸改性镁合金铈钒转化膜的制备与性能","volume":"45","year":"2017"},{"abstractinfo":"为了提高β-磷酸三钙(β-TCP)复合材料的机械性能,采用硬脂酸(C17H25COOH)对β-TCP 表面进行改性处理,研究了β-TCP与C17 H25 COOH的界面作用机理.利用透射电镜、傅里叶红外光谱、热重分析等技术分别对改性前后β-TCP的颗粒形貌、组分和表面—OH基团进行了表征,研究了改性β-TCP/聚左旋乳酸( PLLA)复合材料的机械性能,并利用扫描电镜观察了复合材料断面形貌.研究表明:硬脂酸包覆在β-TCP 表面,改性后β-TCP 粉末具有一定的疏水性,硬脂酸的H+可以与β-TCP中的PO4 3-的一个O发生质子化反应形成—OH.改性β-TCP/PLLA复合材料的机械性能相比改性前有明显提高,改性后的β-TCP微粒在PLLA中分散均匀,两者结合紧密.","authors":[{"authorName":"陈赛","id":"0810ee4b-ceb9-4141-90e5-970965e0fb6e","originalAuthorName":"陈赛"},{"authorName":"马凤仓","id":"5a702c51-0f2d-4e07-8c8a-cb51bafd79e8","originalAuthorName":"马凤仓"},{"authorName":"耿芳","id":"cb99f079-78a5-4f60-b2c7-e4c960378e23","originalAuthorName":"耿芳"},{"authorName":"刘平","id":"0f5bc5f1-b112-4e7c-afe6-910c12c88738","originalAuthorName":"刘平"},{"authorName":"刘新宽","id":"affa732e-c4fd-4b0f-968b-1fa86fb8fd74","originalAuthorName":"刘新宽"},{"authorName":"李伟","id":"51437c14-ae63-4512-92f5-fb47600e6f25","originalAuthorName":"李伟"}],"doi":"10.11951/j.issn.1005-0299.20160111","fpage":"70","id":"8e74144a-b34c-4065-9d85-8d372eb3f93d","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"fdd2b71a-d3f9-4345-95a5-d15a3c43aea4","keyword":"β-磷酸三钙","originalKeyword":"β-磷酸三钙"},{"id":"a3a63db5-bee8-4a83-8efe-1416cfe90861","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"33154ef8-c8b7-436d-9798-698b5339dc24","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"5c3dbea1-1f76-4357-a3dc-0010102c6841","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e96b0816-872c-4fa4-b333-9b22215b6f89","keyword":"机械性能","originalKeyword":"机械性能"}],"language":"zh","publisherId":"clkxygy201601011","title":"硬脂酸改性β-磷酸三钙及其复合材料机械性能研究","volume":"24","year":"2016"},{"abstractinfo":"本文采用硬脂酸球磨处理ZTA陶瓷粉体,研究了硬脂酸对ZTA粉体的表面改性作用,以及对粉体极性的影响,使用SEM观察了粉体的显微形貌,使用FTIR分析了改性机理.实验结果表明,采用硬脂酸对粉体表面改性,有效改善了ZTA粉体颗粒的分散情况,硬脂酸中的羧基(-COOH)与粉体中的羟基(-OH)发生了反应,在粉体表面形成了有机分子膜,粉体由极性变成了非极性.","authors":[{"authorName":"侯晓蓓","id":"b6ee64ed-c76d-4819-b307-81ff082660df","originalAuthorName":"侯晓蓓"},{"authorName":"肖建中","id":"97984ed1-f8f7-4337-b919-0acc1222a9d1","originalAuthorName":"肖建中"},{"authorName":"夏风","id":"bf0f3517-9062-4d41-b57c-782ad04173f3","originalAuthorName":"夏风"},{"authorName":"索进平","id":"132c7db4-f4ba-4817-8c5f-5a969b5486bb","originalAuthorName":"索进平"}],"doi":"10.3969/j.issn.1673-2812.2007.05.031","fpage":"775","id":"d2cd606d-27f9-4069-8ba4-fc1522879daf","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6ae22cd3-7a4b-497e-bb73-6f3c8ed2af9f","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"f9ed5a1b-0ea0-49a3-9fa2-9dbaca23d4c0","keyword":"ZTA陶瓷","originalKeyword":"ZTA陶瓷"},{"id":"d80dbc25-d5fe-4cf0-92f4-6707a4723889","keyword":"分散性","originalKeyword":"分散性"}],"language":"zh","publisherId":"clkxygc200705031","title":"硬脂酸对ZTA粉体分散性的影响机理","volume":"25","year":"2007"},{"abstractinfo":"将硬脂酸包覆在前驱体γ-AlOOH表面,在干燥过程中,硬脂酸屏蔽了γ-AlOOH表面的活性羟基而有效控制了团聚.然后在Ar中煅烧转相,硬脂酸裂解成的碳有效地控制了转相过程中的团聚.最后在空气中低温煅烧排碳得到超细α-Al2O3粉体.","authors":[{"authorName":"白世河","id":"28024f02-3e45-4b13-a32c-3a701f308385","originalAuthorName":"白世河"},{"authorName":"潘伟","id":"20c10477-ecc1-46e4-b1a1-3acb0ada8da3","originalAuthorName":"潘伟"},{"authorName":"房明浩","id":"bfddc496-ee0f-4211-88d8-666961aed168","originalAuthorName":"房明浩"},{"authorName":"徐强","id":"8b217247-bbf0-4f57-8dd9-ce2777d0830b","originalAuthorName":"徐强"},{"authorName":"吴音","id":"70f3a110-68b2-4f2d-9351-a46969cc1e6c","originalAuthorName":"吴音"}],"doi":"","fpage":"164","id":"384ca057-00ba-4bb6-bd1a-5372f919523f","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1d7c4965-9f50-4560-b557-dc3062ded2c7","keyword":"α-Al2O3","originalKeyword":"α-Al2O3"},{"id":"c29a0276-b91e-49e9-8264-b58412f0ce87","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"b90fc23b-180f-4783-9d8b-a9f354f0e22c","keyword":"包覆","originalKeyword":"包覆"},{"id":"ff2ff0d5-da37-4857-8aac-b3a959c0c494","keyword":"团聚","originalKeyword":"团聚"}],"language":"zh","publisherId":"xyjsclygc2005z1047","title":"硬脂酸在制备超细α-Al2O3粉体中的防团聚作用","volume":"34","year":"2005"}],"totalpage":38,"totalrecord":380}