{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"比较空心微球表面化学镀Ni薄膜的工艺.分别以Sn-Pd胶体溶液和[Ag(NH3)2]+溶液作为活化剂,将空心微球表面进行活化,再采用化学镀的方法分别在其上淀积金属Ni薄膜.使用扫描电子显微镜(SEM)、能量色散光谱(EDS)和X-射线衍射光谱(XRD)对两种工艺所镀Ni薄膜的表面微观结构和组分进行表征.结果表明:用Sn-Pd胶体溶液活化后的空心微球表面淀积了均匀、致密的金属Ni薄膜,该薄膜是由大小约100 nm的颗粒组成;而以[Ag(NH3)2]+溶液活化后的空心微球表面淀积的金属Ni薄膜,是由大小约1 μm的颗粒组成.并分析了这两种镀层形成的机理.","authors":[{"authorName":"黄云霞","id":"95f8bca4-e4fd-46a8-9ba5-a95f0d957ca3","originalAuthorName":"黄云霞"},{"authorName":"曹全喜","id":"63a96820-88a2-4fb3-997c-dfd072121c45","originalAuthorName":"曹全喜"},{"authorName":"李智敏","id":"ea92d584-62da-4b27-9685-5435880d03d8","originalAuthorName":"李智敏"},{"authorName":"王毓鹏","id":"8272dd43-c0a4-4af9-a427-f98a4797c429","originalAuthorName":"王毓鹏"},{"authorName":"卫云鸽","id":"890ed8d5-5c21-45a4-883a-185049d137f1","originalAuthorName":"卫云鸽"}],"doi":"","fpage":"950","id":"76b465c1-fd0f-4975-bf64-970b40449107","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"63961476-19f9-449a-8acb-8e6af05853fe","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"a5b5bb32-dfea-4657-b936-6c5ff6d644f8","keyword":"Ni薄膜","originalKeyword":"Ni薄膜"},{"id":"552ffdcb-8933-486a-acac-081e520cc75f","keyword":"工艺","originalKeyword":"工艺"},{"id":"a542e2a3-46ec-4a2b-b718-954b9cae3bc6","keyword":"空心微球","originalKeyword":"空心微球"}],"language":"zh","publisherId":"xyjsclygc2007z1268","title":"空心微球表面化学镀Ni薄膜的工艺研究","volume":"36","year":"2007"},{"abstractinfo":"采用动态蒙特卡罗(kinetic Monte Carlo,简称KMC)方法研究物理气相沉积(physical vapor deposition,简称PVD)制备Ni薄膜过程中入射角度对薄膜微观结构的影响.该KMC模型中既包括入射原子与表面之间的碰撞,又包括被吸附原子的扩散.模拟中用动量机制确定被吸附原子在表面上的初始构型,用分子稳态(molecular statics,简称MS)计算方法计算扩散模型中跃迁原子的激活能.对于模拟结果,采用表面粗糙度和堆积密度作为沉积构型评价指标.研究结果表明:当沉积速率是5 μm/min,基板温度是300 K和500 K时,表面粗糙度和堆积密度曲线在入射角度等于35°时出现拐点;入射角度小于35°时,入射角度增大对表面粗糙度增加和堆积密度减小的影响很少;但是入射角度大于35°时,随入射角度增大表面粗糙度迅速增加、堆积密度迅速减小.另外,当基板温度是300 K时,入射角度对薄膜微观结构的影响程度大于基板温度为500 K时的影响程度.说明高基板温度促使原子更加充分地扩散,从而能削弱自阴影效应的作用.但是,在保证足够高基板温度和合理沉积速率的情况下,入射角度过大同样不利于致密结构形成.","authors":[{"authorName":"单英春","id":"adad9c6e-0ebb-4131-a008-182f50ba8fdd","originalAuthorName":"单英春"},{"authorName":"徐久军","id":"a6c55491-1599-4937-abb5-9c68bbcfabe1","originalAuthorName":"徐久军"},{"authorName":"赫晓东","id":"7506e8d7-4f24-4bce-80b8-887e108f727c","originalAuthorName":"赫晓东"},{"authorName":"何飞","id":"ef067d8a-1676-4f0f-af77-b4801c6b41bb","originalAuthorName":"何飞"},{"authorName":"李明伟","id":"713a913f-948b-4adc-903a-c7816ad0506b","originalAuthorName":"李明伟"}],"doi":"","fpage":"583","id":"a4e12e21-e928-4985-9b7a-3f702fd85b88","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"78a1dc13-141b-4c9b-9c65-05ffaa5b2e4f","keyword":"动态蒙特卡罗","originalKeyword":"动态蒙特卡罗"},{"id":"b6062786-b03c-4a4c-a45e-da60bf4cd416","keyword":"入射角度","originalKeyword":"入射角度"},{"id":"c1322a28-abb7-4173-9152-9fd2539bfe00","keyword":"PVD","originalKeyword":"PVD"},{"id":"5194b984-f81c-4148-b8db-2808b54c282a","keyword":"Ni薄膜","originalKeyword":"Ni薄膜"}],"language":"zh","publisherId":"xyjsclygc200704005","title":"入射角度对PVD Ni薄膜微观结构的影响","volume":"36","year":"2007"},{"abstractinfo":"采用射频等离子体增强化学气相沉积技术,以Ni为催化剂,在Si基底上沉积出定向性良好的碳纳米管.用扫描电镜表征了催化剂颗粒大小和相应的碳纳米管形貌.深入研究了催化剂膜厚对碳纳米管牛长的影响.结果表明:不同度的催化剂薄膜经刻蚀形成的颗粒密度、尺寸、分布等对碳纳米管的合成质量起主要作用.催化剂厚度≤5 nm时,形成的颗粒密度较小而且分布不均,制备的碳纳米管产量低、定向性差.催化剂厚度≥15 nm时,形成的颗粒较大,粘连在一起,生长时大部分被非晶碳包覆,几乎没有碳纳米管的生长.催化剂厚度为10 nm时,形成的颗粒密度大、分布较均,制备的碳纳米管纯度高、定向性好.","authors":[{"authorName":"王小冬","id":"54affe8e-30f0-4f6b-9b37-562aa426a4a6","originalAuthorName":"王小冬"},{"authorName":"王六定","id":"e983c343-09af-4708-9059-e9109141f46f","originalAuthorName":"王六定"},{"authorName":"席彩萍","id":"284ad3f1-c716-44e4-9ae5-9e7ea9abe067","originalAuthorName":"席彩萍"},{"authorName":"李昭宁","id":"81439f99-c845-40fc-a299-dd4d68dfbfb8","originalAuthorName":"李昭宁"},{"authorName":"赵景辉","id":"e075cc3c-7364-4cab-a40e-cc216ef14a64","originalAuthorName":"赵景辉"}],"doi":"","fpage":"528","id":"62fcdb85-c1fd-498e-ae1d-4be82fa0ec81","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"941abb82-9b00-416b-8735-f7df075c1b5a","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5c754fc5-2340-400c-8b34-b5ad846bd466","keyword":"Ni薄膜","originalKeyword":"Ni薄膜"},{"id":"33392862-798b-44cf-abdb-f2e9531b4c01","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"bc6b440c-d215-4e2a-a7fa-2717c419f2c6","keyword":"膜厚","originalKeyword":"膜厚"}],"language":"zh","publisherId":"rgjtxb98201102048","title":"催化剂膜厚对碳纳米管薄膜生长的影响","volume":"40","year":"2011"},{"abstractinfo":"采用化学镀技术在低密度玻璃微球表面沉积了一层Ni镀层,制备了具有导电性和磁性的Ni镀层/玻璃微球壳-核复合粉体.采用X射线衍射仪(XRD)、扫描电镜(SEM)和能谱仪(EDS)对化学镀前后玻璃微球的结构、表面形貌以及成分进行了分析.结果表明,化学镀后玻璃微球表面包覆了一层均匀致密的Ni薄膜,厚度约为0.2μm,镍具有面心立方结构.使用波导法在8~12GHz波段内对化学镀前后的微球进行了介电常数和磁导率测试.电磁性能研究表明,玻璃微球化学镀镍后电磁损耗增大,显示出作为电磁波吸收材料的应用前景.","authors":[{"authorName":"于美","id":"92d1132a-7843-4fe5-b1a1-e41845dc12c8","originalAuthorName":"于美"},{"authorName":"刘建华","id":"dad3ec29-efc4-4b61-a35c-7375d754ee1a","originalAuthorName":"刘建华"},{"authorName":"李松梅","id":"f3adc3d7-9c13-4fc0-80cb-b861ecd89e63","originalAuthorName":"李松梅"},{"authorName":"徐亮","id":"f6ae9553-c9e8-418b-88a0-d90de4abbb89","originalAuthorName":"徐亮"}],"doi":"10.3969/j.issn.1001-4381.2009.06.001","fpage":"1","id":"1dd73564-582a-4ae1-ba7d-571792ca87f7","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"2f00adc9-6e48-4d78-9a24-f4296738d85e","keyword":"玻璃微球","originalKeyword":"玻璃微球"},{"id":"354c2d61-e2a2-4f11-9afa-d48f268ede58","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"5d1722df-b5e2-4834-9ca6-b9ff23fa5cc9","keyword":"Ni薄膜","originalKeyword":"Ni薄膜"},{"id":"3f70f6d0-afa4-4be1-a0b6-26489cc97a40","keyword":"电磁性能","originalKeyword":"电磁性能"}],"language":"zh","publisherId":"clgc200906001","title":"空心玻璃微球镍镀层的制备及其电磁性能","volume":"","year":"2009"},{"abstractinfo":"采用磁控溅射工艺,以纯钨和纯镍为靶材在ITO玻璃上制备Ni掺杂WOx电致变色薄膜,研究了Ni掺杂对WOx薄膜电致变色性能和微观结构的影响机理.实验结果表明:均匀掺杂少量的Ni可改变WOx薄膜内部的缺陷分布及结构,提高薄膜的电致变色性能.XRD分析表明,掺杂后的WOx:Ni薄膜为非晶态;XPS分析表明:WOx:Ni薄膜中的Ni为Ni2+.","authors":[{"authorName":"黄佳木","id":"27483374-6004-4559-a0d4-c66acda10eb1","originalAuthorName":"黄佳木"},{"authorName":"徐爱娇","id":"a35d9ee0-c912-4950-a68a-ae49996dc30c","originalAuthorName":"徐爱娇"},{"authorName":"穆尉鹏","id":"59313cdf-6ed6-4ab1-8354-c61ba85eac1d","originalAuthorName":"穆尉鹏"}],"doi":"","fpage":"177","id":"ae4dfec0-cd87-4276-a92e-a6d6d6f0ba3e","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"ed05c1a7-c03b-4ac0-8c6c-e705e96ba67f","keyword":"WOx:Ni薄膜","originalKeyword":"WOx:Ni薄膜"},{"id":"d843f7a5-c70f-417b-af46-fbec7bdd64d9","keyword":"电致变色","originalKeyword":"电致变色"},{"id":"de338a88-11b7-4f1f-8b80-7371b90563ad","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"e20b756e-a5d9-44a5-9d5c-566a0b007614","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"clkxygc200802005","title":"Ni掺杂WOx薄膜的电致变色性能","volume":"26","year":"2008"},{"abstractinfo":"用双离子束溅射法在玻璃基片上制得了Fe-Ni-N薄膜,研究了Ni含量、主源气氛及退火温度对Fe-Ni-N薄膜的结构、磁性及热稳定性的影响,选择合适的工艺条件,可制得在(100)面方向有100%晶粒取向度的单一γ′-(Fe,Ni)4N相.Ni含量为6.7%(摩尔分数)的Fe-Ni-N薄膜具有较好的软磁性能,其饱和磁化强度Ms为2.04 T,矫顽力Hc为0.68 kA/m.但是随着Ni含量的提高,Fe-Ni-N薄膜的热稳定性下降在主源气压比PN2/PAr较低时,有利于氮含量较低的γ'相的形成,在较高的PN2/PAr条件下,则形成氮含量较高的ε-(Fe,Ni)2~3N相和ξ-(Fe,Ni)2N相.","authors":[{"authorName":"诸葛兰剑","id":"313126eb-324e-4185-908e-5762f50147e6","originalAuthorName":"诸葛兰剑"},{"authorName":"姚伟国","id":"a313d6d7-d15c-4fbf-84e6-d790c68f82b1","originalAuthorName":"姚伟国"},{"authorName":"吴雪梅","id":"8bcdcfb1-ae69-4598-9578-cfd1bc611750","originalAuthorName":"吴雪梅"}],"doi":"10.3321/j.issn:1005-3093.2002.06.009","fpage":"600","id":"ae5fc083-9aa4-4291-b5de-17b2b55baf0d","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"cf9b6c54-6de8-4d1a-a5ec-7fb5707fb55b","keyword":"Fe-Ni-N薄膜","originalKeyword":"Fe-Ni-N薄膜"},{"id":"1ae2284a-b1ca-427d-bb1a-de648f8f7f15","keyword":"结构","originalKeyword":"结构"},{"id":"3190d27d-7652-4f63-b045-4ef6a89a60c6","keyword":"磁性","originalKeyword":"磁性"},{"id":"60330312-ad05-42e9-aa33-f86b27e8ce21","keyword":"晶粒取向","originalKeyword":"晶粒取向"}],"language":"zh","publisherId":"clyjxb200206009","title":"Fe-Ni-N薄膜的结构及磁性","volume":"16","year":"2002"},{"abstractinfo":"Ni-Ti形状记忆合金(SMA)薄膜由于其尺寸小输出功大,是一种具有诱人前景的微机械材料.主要介绍了Ni-Ti薄膜的马氏体相变及时效稳定性、力学性能.并介绍了其最新的应用研究.","authors":[{"authorName":"秦桂红","id":"63fa8751-7e7d-41f4-a7ef-d572ae94ed3c","originalAuthorName":"秦桂红"},{"authorName":"严彪","id":"b8ea1056-8645-4f4b-b254-18a6983e59e3","originalAuthorName":"严彪"}],"doi":"","fpage":"342","id":"f44bf54e-92a4-41d7-9ab9-c60e9208dc2d","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4baad386-4bb3-4a10-9bb6-9c4a2862596d","keyword":"Ni-Ti形状记忆合金薄膜","originalKeyword":"Ni-Ti形状记忆合金薄膜"},{"id":"dfb43817-b8c4-42e6-b1b4-4664df5b2cb7","keyword":"时效","originalKeyword":"时效"},{"id":"e9e120a3-7cdd-4703-ace3-9d187fb67be3","keyword":"退火","originalKeyword":"退火"},{"id":"063d810c-0a1a-4ff3-8f49-5905452b2d7c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"cldb2004z2105","title":"Ni-Ti形状记忆合金薄膜的最新研究","volume":"18","year":"2004"},{"abstractinfo":"为了得到高质量的纳米薄膜,对直流磁控溅射法制备Ni-Ti薄膜工艺进行了研究.采用单晶硅和玻璃两种基体材料,并在不同的基体温度、晶化温度、溅射功率等条件下制备薄膜.之后对薄膜进行了XRD,SEM分析.分析结果表明:薄膜成分、厚度、表面形貌、致密度与溅射功率、基体温度、晶化温度、基体材料密切相关.并根据实验结果给出优化的纳米Ni-Ti薄膜制备工艺.","authors":[{"authorName":"傅宇东","id":"aa9d3c20-b3c7-4cf4-8c6d-031518a998aa","originalAuthorName":"傅宇东"},{"authorName":"王刚","id":"e6aedf35-e231-41d1-aa1b-5b86760e01a5","originalAuthorName":"王刚"},{"authorName":"刘臣","id":"2095d212-daad-4042-9828-c517a90ca464","originalAuthorName":"刘臣"},{"authorName":"孟祥龙","id":"434197a1-82d3-423d-9a7b-bf0d4b6e81b5","originalAuthorName":"孟祥龙"}],"doi":"","fpage":"925","id":"cb8cb62f-533a-4415-9a20-42ab964a4ce6","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3117094f-f1ed-4c96-a598-6fb0e3eea001","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"01f8e8af-e39d-4f63-89e3-e4bf8be4ae80","keyword":"纳米薄膜","originalKeyword":"纳米薄膜"},{"id":"cee53585-7396-4f07-aa94-1bce75ffb1fb","keyword":"Ni-Ti合金","originalKeyword":"Ni-Ti合金"}],"language":"zh","publisherId":"xyjsclygc2007z1261","title":"磁控溅射制备纳米Ni-Ti薄膜工艺研究","volume":"36","year":"2007"},{"abstractinfo":"用化学沉积法制备了系列Ni(P)、Ni(B)合金薄膜样品.用X射线衍射结构分析方法证明样品由尺寸为纳米量级的颗粒组成.样品在磁性上表现出超顺磁性.对热磁处理前后的磁学参数进行了比较研究.","authors":[{"authorName":"章建高","id":"63564434-0c79-4862-bc37-26278312b0ca","originalAuthorName":"章建高"}],"doi":"","fpage":"69","id":"c6310829-2e73-4dc2-926f-6bf061b78bd4","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1ef80445-ea02-4a0a-9dcf-e0679dde1ae7","keyword":"纳米薄膜","originalKeyword":"纳米薄膜"},{"id":"314ac9ec-8f5a-4fbd-a339-b06c66e6d23b","keyword":"磁性材料","originalKeyword":"磁性材料"},{"id":"664c63b5-7a1d-40bc-b5bc-97cc1e87cb79","keyword":"超顺磁性","originalKeyword":"超顺磁性"}],"language":"zh","publisherId":"cldb200209023","title":"化学沉积法制备的Ni(P)、Ni(B)纳米薄膜的结构与磁性","volume":"16","year":"2002"},{"abstractinfo":"利用射频磁控溅射技术成功地在Si衬底上沉积Ni-Mn-Ga薄膜,并采用XRD、SEM、AFM及 EMPA系统研究Ni-Mn-Ga薄膜的晶体学结构、断面形貌、表面形貌、成分及其影响规律.结果表明,经823K退火1h Ni-Mn-Ga薄膜完全晶化,室温下呈L21型体心立方结构;断面形貌揭示Ni-Mn-Ga薄膜呈柱状结构.Ni-Mn-Ga薄膜的表面粗糙度随溅射功率和溅射时间的增加而增大;Ni-Mn-Ga薄膜中Ga的含量受溅射功率影响较大,Ni的含量受溅射时间影响较大.","authors":[{"authorName":"刘超","id":"07f60983-fc14-418c-8080-335c8e5dd27f","originalAuthorName":"刘超"},{"authorName":"吴冶","id":"cbd07858-43bf-46cf-9edc-5ea447741052","originalAuthorName":"吴冶"},{"authorName":"蔡伟","id":"c4c785e2-808f-4b45-8510-69cf7c1abdf0","originalAuthorName":"蔡伟"},{"authorName":"赵连城","id":"f581af99-9288-40c2-8bca-f4e9371412b2","originalAuthorName":"赵连城"}],"doi":"","fpage":"543","id":"56589343-9f93-4bbe-8a53-271768092236","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f55dec00-f416-4b2a-b2d3-315e99d1e4cf","keyword":"Ni-Mn-Ga","originalKeyword":"Ni-Mn-Ga"},{"id":"4dc74711-7e92-4bdc-a097-9d8a544b3f16","keyword":"形状记忆","originalKeyword":"形状记忆"},{"id":"35a3710f-2730-4b02-a009-53907d13978f","keyword":"磁驱动","originalKeyword":"磁驱动"},{"id":"6d94bb30-4344-4e36-922f-d54d91142693","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"gncl200504018","title":"磁控溅射Ni-Mn-Ga磁驱动记忆薄膜的组织结构与成分研究","volume":"36","year":"2005"}],"totalpage":2386,"totalrecord":23856}