{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了Ce改性的Pt/γ-Al2O3对于富氢气氛下CO选择氧化反应的催化行为考察了制备条件(沉积沉淀法、分步沉积沉淀法以及沉积沉淀温度)对催化活性的影响结果表明,在80℃时用沉积沉淀方法制备的催化剂Pt-Ce/γ-Al2O3-CP-80对CO氧化反应表现出良好的活性和选择性,CO转化率在120℃时可以达到85%.利用氢气程序升温还原和原位漫反射红外光谱对不同条件下制备的催化剂进行了表征,分析了Ce的促进作用.","authors":[{"authorName":"刘焕玲","id":"625e2fd9-669e-48ee-84e5-8ef1580607c0","originalAuthorName":"刘焕玲"},{"authorName":"马磊","id":"6b4e46ce-b5ad-4e51-a7c0-4750abe9f4a0","originalAuthorName":"马磊"},{"authorName":"邵赛兵","id":"8d42e8b2-98a5-49e7-81dd-508932e57dea","originalAuthorName":"邵赛兵"},{"authorName":"李增和","id":"be786565-4b82-4401-84d2-39b2c68e4a02","originalAuthorName":"李增和"},{"authorName":"王爱琴","id":"9caa126c-2c1b-4b8f-bd16-86c2f20109de","originalAuthorName":"王爱琴"},{"authorName":"黄延强","id":"12c8080a-a53c-4a45-b623-003a0ec4c4dc","originalAuthorName":"黄延强"},{"authorName":"张涛","id":"665085e8-90fc-451c-a849-2d8a2666fae6","originalAuthorName":"张涛"}],"doi":"","fpage":"1077","id":"33c8f91d-78ec-494b-bd1f-ff6c393d0708","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0f170663-f38f-4cd2-acc2-2e26607877ff","keyword":"铂","originalKeyword":"铂"},{"id":"e16401ed-30ed-4884-b1c0-9ce1752dc317","keyword":"铈","originalKeyword":"铈"},{"id":"1590f874-8274-47f4-9550-e94fb742a95a","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"d6c9355b-2085-435a-9f57-32c6bb6d3838","keyword":"沉积沉淀法","originalKeyword":"共沉积沉淀法"},{"id":"77c6d244-79ae-4cef-adce-d0019ccdf9ca","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"cdc2e086-4135-47fe-8d99-5589d68f3a67","keyword":"选择性氧化","originalKeyword":"选择性氧化"},{"id":"f4af0445-df30-4827-9fc4-522879595945","keyword":"燃料电池","originalKeyword":"燃料电池"}],"language":"zh","publisherId":"cuihuaxb200712013","title":"Ce改性的Pt/γ-Al2O3催化剂用于富氢气氛下CO选择氧化","volume":"28","year":"2007"},{"abstractinfo":"简述了沉淀法的基本原理.全面概述了沉淀法的研究及其应用现状.研究表明,沉淀法是一种极有前途的制备新型材料的方法.并指出了今后沉淀法的研究方向.","authors":[{"authorName":"田玉明","id":"cc0734ed-b8ed-4aad-b179-11243ceee05d","originalAuthorName":"田玉明"},{"authorName":"黄平","id":"d94e2631-c7ff-450a-965f-6f6b450e2368","originalAuthorName":"黄平"},{"authorName":"冷叔炎","id":"65787ec3-47ef-47a4-a50c-d097703ad35d","originalAuthorName":"冷叔炎"},{"authorName":"梁丽萍","id":"b07348da-b60b-45fc-8c81-cb463af020ae","originalAuthorName":"梁丽萍"},{"authorName":"","id":"9a03ea42-11cd-47d2-b71d-9ba9ecf120c3","originalAuthorName":""}],"doi":"","fpage":"47","id":"147ad067-e096-486b-9a46-8a55d80f52f0","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f642a062-dfed-4bee-b221-2d2784019b3e","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"d138fb6a-a303-4e0a-b3ee-20be0ac8de83","keyword":"粉体","originalKeyword":"粉体"},{"id":"a0402936-99ef-4333-b286-69923db28ae5","keyword":"陶瓷材料","originalKeyword":"陶瓷材料"}],"language":"zh","publisherId":"cldb200002017","title":"沉淀法的研究及其应用现状","volume":"14","year":"2000"},{"abstractinfo":"采用不同的沉积法制备了氧化铌(Nb2O5)负载的金纳米粒子催化剂,即沉积-沉淀(DP)、尿素辅助的DP沉积-还原(DR)和一步法制备了1 wt%Au/Nb2O5催化剂.在众多类型Nb2O5(包括商业Nb2O5)中,采用水热法制备的层间型Nb2O5(Nb2O5(HT))最适合用作载体.结果表明,较大比表面积的Nb2O5(HT)使得金以纳米颗粒形式分散于其上.在优化的条件下,以DP和DR沉积于Nb2O5(HT)上的金纳米粒子平均粒径为5 nm.采用DR法制备的Au/Nb2O5(HT)催化剂上CO转化率为50%时的温度为73oC.不沉积金的条件下,即使在250oC, Nb2O5(HT)对CO氧化反应也没有催化活性.因此,金的沉积对活性的促进作用非常明显.该简易Au/Nb2O5催化剂将金催化剂的类型扩展到酸性载体,这将增加新的应用.","authors":[{"authorName":"Toru Murayama","id":"89b4f0b9-bbe0-4a4d-8194-b88a9c6c7cb9","originalAuthorName":"Toru Murayama"},{"authorName":"Masatake Haruta","id":"6a9dcc0a-54ce-49d3-a44f-f1d02ae2fdea","originalAuthorName":"Masatake Haruta"}],"doi":"10.1016/S1872-2067(16)62508-1","fpage":"1694","id":"17be88a2-3ecf-41cd-82cc-e89cfb889a61","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"50fa8eb5-2222-4389-805b-0768f2b43006","keyword":"金纳米粒子","originalKeyword":"金纳米粒子"},{"id":"a9a7423f-62c1-4868-a191-691aee257bf7","keyword":"氧化铌","originalKeyword":"氧化铌"},{"id":"15bf4681-8ab3-4e1e-a719-a65630a00ee7","keyword":"固体酸","originalKeyword":"固体酸"},{"id":"fabac450-8a3f-4f11-a147-35847ba15a2f","keyword":"CO氧化","originalKeyword":"CO氧化"},{"id":"f549812e-4f8b-4cf5-a0b0-b09d91485e09","keyword":"多相催化剂","originalKeyword":"多相催化剂"}],"language":"zh","publisherId":"cuihuaxb201610014","title":"沉积-沉淀法沉积-还原法制备Nb2O5负载的金纳米粒子及其催化CO氧化活性","volume":"37","year":"2016"},{"abstractinfo":"采用钡盐沉淀法处理六价铬电镀废水,研究了废水预调pH、破氰方式和Cr(VI)沉淀剂加入量对六价铬、总铬、铜和镍去除率的影响,并研究了硫酸加入量对铬酸钡沉淀中六价铬回收率的影响。钡盐法处理六价铬电镀废水的最优工艺参数为:预调pH 8,钡盐加入量为理论值的2.4倍,双氧水破氰,液碱终调pH至10。采用最优工艺参数处理后,出水总铬含量为0.4 mg/L,镍含量为0.3 mg/L,铜未检出,均低于GB 21900-2008中表2的排放限值。用浓硫酸对处理废水所得铬酸钡沉淀进行转化反应后,六价铬的回收率可达65%。钡盐沉淀法的药剂成本和危险固废处理成本均较传统化学还原高,因此钡盐沉淀法较适用于专业镀铬厂和铬水严格分质排放的电镀园区。","authors":[{"authorName":"李航彬","id":"906d2b51-690e-43a1-909e-d1ee1154b480","originalAuthorName":"李航彬"},{"authorName":"钱波","id":"ad1ef1fc-45be-4e8d-a1ce-a2af76139040","originalAuthorName":"钱波"},{"authorName":"黄聪聪","id":"e6ad5ac4-ced0-4c67-902c-019aae99e6e8","originalAuthorName":"黄聪聪"},{"authorName":"陈新才","id":"8aa5e6fd-24c3-46fd-9af0-d8dc2c893889","originalAuthorName":"陈新才"},{"authorName":"张世新","id":"f65b1bec-591f-4efa-afe6-2e57ed3df0f3","originalAuthorName":"张世新"},{"authorName":"刘祥虎","id":"ea816e47-c19a-403e-8230-e17469e96308","originalAuthorName":"刘祥虎"}],"doi":"","fpage":"391","id":"87038162-033d-464f-a965-6414820cf1d5","issue":"9","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"5d4165a1-4a08-4890-816b-e929285f53e5","keyword":"电镀废水","originalKeyword":"电镀废水"},{"id":"17abd641-39c5-4744-90c4-c2e3fd6bf9a7","keyword":"六价铬","originalKeyword":"六价铬"},{"id":"6abd1929-efea-4cb1-8097-0229073c498c","keyword":"钡盐沉淀法","originalKeyword":"钡盐沉淀法"},{"id":"6e68eb86-5633-440e-a7c4-ee2e74147ac1","keyword":"固固转化","originalKeyword":"固固转化"}],"language":"zh","publisherId":"ddyts201409017","title":"钡盐沉淀法处理六价铬电镀废水","volume":"","year":"2014"},{"abstractinfo":"以NaHSO3为还原剂,新型重金属离子捕集剂DTCR为螯合剂,采用螯合沉淀法处理含铬电镀废水.研究了还原剂投加量、还原反应阶段的废水pH、螯合剂投加量、絮凝剂(PAM)投加量、螯合沉淀阶段的废水pH和搅拌时间对处理效果的影响.还原反应的较优工艺为:NaHSO3 200 mg/L,废水pH 1.84,搅拌时间30 min.螯合沉淀的最佳工艺条件为:DTCR 70 mg/L,PAM 8 mg/L,废水pH 8.0,搅拌时间40 min.采用最佳螯合沉淀工艺处理含铬电镀废水时,总铬去除率在95%以上,出水总铬为0.14 mg/L,且未检测到其他重金属离子,可达标排放.","authors":[{"authorName":"刘培","id":"afd619a6-b409-482e-9c24-997b60d50779","originalAuthorName":"刘培"},{"authorName":"陈晨","id":"5e8cd7ab-f476-4f01-84c4-155126c115ac","originalAuthorName":"陈晨"}],"doi":"","fpage":"45","id":"4c0d2e23-b0c0-4461-9580-dcdced73e635","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"468d8193-8742-4292-8f78-b7729c735021","keyword":"电镀","originalKeyword":"电镀"},{"id":"eaeab6dd-dc5e-44f1-a176-09e8f457dfe5","keyword":"废水","originalKeyword":"废水"},{"id":"bb39d3da-aaf0-4a81-9555-2c7b5e0712be","keyword":"铬","originalKeyword":"铬"},{"id":"f50280cf-754f-4792-b3b9-e9e9b35c5f00","keyword":"重金属捕集剂","originalKeyword":"重金属捕集剂"},{"id":"983006b9-e9b8-45da-945a-73b1acdc7c07","keyword":"还原","originalKeyword":"还原"},{"id":"74162175-eb32-415b-a60c-1c26bea37d55","keyword":"螯合","originalKeyword":"螯合"},{"id":"e184f929-c0f5-480a-819d-f1930236a4f5","keyword":"沉淀","originalKeyword":"沉淀"}],"language":"zh","publisherId":"ddyts201305011","title":"螯合沉淀法处理含铬电镀废水","volume":"32","year":"2013"},{"abstractinfo":"对处理高COD电镀污水的传统工艺方法进行了改进.先利用类Fenton氧化反应大幅度降低COD,彻底分解污水中的络合物和其他有机物,再利用氢氧化物和有机硫化物沉淀法沉淀包括镍在内的重金属.实际运行结果表明,采用新工艺后污泥量减少,运行费用降低,一次处理合格率提高,工作环境也得到了改善.","authors":[{"authorName":"彭明智","id":"f2fa9c4d-8172-4c87-aa5e-fdf72120f9ec","originalAuthorName":"彭明智"},{"authorName":"姜荆","id":"e5edac51-202e-4ccf-acb2-37ad428ed404","originalAuthorName":"姜荆"}],"doi":"","fpage":"40","id":"564a8aee-6f59-4fdc-b861-72b0da91b4e7","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"7da9fc1b-7617-4f28-97d4-b1821fe8f830","keyword":"电镀","originalKeyword":"电镀"},{"id":"27abf8a5-863c-4008-b148-9511381ece67","keyword":"含镍污水","originalKeyword":"含镍污水"},{"id":"39bb46f2-863c-4904-bee8-2e050ab3b546","keyword":"处理","originalKeyword":"处理"},{"id":"9d5fb345-926b-4082-8d2e-76f8f110fcad","keyword":"类芬顿反应","originalKeyword":"类芬顿反应"},{"id":"df92ef07-b427-44e3-8eb6-d6dd1f00d3fe","keyword":"沉淀","originalKeyword":"沉淀"},{"id":"1e304c04-a4ca-4bcf-9faa-ceb4f2550646","keyword":"化学需氧量","originalKeyword":"化学需氧量"}],"language":"zh","publisherId":"ddyts200908012","title":"氧化-沉淀法处理高COD含镍污水","volume":"28","year":"2009"},{"abstractinfo":"采用沉淀法与水热合成了纳米棒状载银羟基磷灰石(Ag-HA)颗粒.研究不同合成方法和载银量时Ag-HA晶体结构、形貌及抗菌性能.结果表明:水热合成的Ag-HA长径比高、分散性好,产物结晶度高、晶粒尺寸大,晶胞参数更小.沉淀法70℃时,Ag-HA平均晶粒尺寸为(22.7±0.7)nm;水热180℃时,平均晶粒尺寸为(50.7±0.9)nm.银的引入会增大产物晶粒尺寸及晶胞参数,当载银量为1.30%时,平均晶粒尺寸为(53.7±0.9)nm,晶胞参数a=0.9465nm,c=0.6970nm.产物与大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)培养后结果显示,Ag-HA对两种实验菌均表现出良好的杀菌性能,不同载银量Ag-HA在1,3,6,12,24h后的杀菌率均为100%.","authors":[{"authorName":"邓城","id":"268fb1c6-5f8a-494c-aac8-db41be09e96a","originalAuthorName":"邓城"},{"authorName":"漆小鹏","id":"d28d989d-b718-41ae-add8-e0a60ff1c98d","originalAuthorName":"漆小鹏"},{"authorName":"李倩","id":"11234b57-b223-4a3b-90d3-711bd33efc13","originalAuthorName":"李倩"},{"authorName":"尹从岭","id":"7299ea6c-78c1-4083-ac73-1c5387579540","originalAuthorName":"尹从岭"},{"authorName":"杨辉","id":"150e1d94-a647-4bd2-b0a5-7d4f83c2cfa9","originalAuthorName":"杨辉"}],"doi":"10.11868/j.issn.1001-4381.2016.000319","fpage":"113","id":"28b2be42-4d17-430a-809c-72e18dad83a5","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"1e827645-593b-4358-90d3-9e9319bdbd03","keyword":"载银羟基磷灰石","originalKeyword":"载银羟基磷灰石"},{"id":"a01029ba-cf2d-40ab-aaee-3f7c916135cc","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"21d5f811-0e74-4108-af30-4f2346be2ed6","keyword":"水热","originalKeyword":"水热法"},{"id":"d67d64c2-056b-43d1-a071-7fff54f91b2a","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"32994937-e6cf-4171-9c7a-9f62af656092","keyword":"抗菌性能","originalKeyword":"抗菌性能"}],"language":"zh","publisherId":"clgc201704018","title":"沉淀法与水热合成载银羟基磷灰石及其抗菌性能","volume":"45","year":"2017"},{"abstractinfo":"采用共沉淀法,以正丁醇为溶剂进行沸蒸馏,合成了纳米级的YPO4:Tb,采用X射线衍射(XRD)、粒度分布和透射电镜(TEM)进行了表征并对发光性能进行了研究.实验结果表明合成的YPO4:Tb粒径大约为40nm左右,并且从其发射光谱中可以看出合成的纳米级YPO4:Tb有明亮的绿光发射.","authors":[{"authorName":"韩燕","id":"3e9db118-1028-49a5-a50c-0213a0f87c28","originalAuthorName":"韩燕"},{"authorName":"牛淑云","id":"509fa750-0236-49f1-9489-85c8f60e7940","originalAuthorName":"牛淑云"},{"authorName":"张洪武","id":"72b196d1-7118-44bb-bdd5-1eef8339387a","originalAuthorName":"张洪武"},{"authorName":"辛勤","id":"b03065c2-b678-4a1d-ae29-37aa1e984ba5","originalAuthorName":"辛勤"}],"doi":"","fpage":"280","id":"ba1432c0-6533-4752-a55a-3465d8df72da","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"72031bd6-06bd-40cd-bd36-c40f5579097a","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"46748e14-ff04-436c-b31a-ad97af47de8e","keyword":"发光","originalKeyword":"发光"},{"id":"e25faf92-b584-4238-abe7-c2e1c6a6d59d","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"3af3123b-8fa8-4d63-96ef-6ef32bf59c7a","keyword":"YPO4:Tb","originalKeyword":"YPO4:Tb"}],"language":"zh","publisherId":"gncl2004z1064","title":"共沉淀法合成纳米级YPO4:Tb及发光性能研究","volume":"35","year":"2004"},{"abstractinfo":"采用共沉淀法沉积-沉淀法和改性沉积-沉淀法制备了Au/Fe2O3催化剂,运用N2吸附、X射线衍射、X射线光电子能谱和透射电镜等技术对其进行了表征,考察了制备方法对Au/Fe2O3催化剂水煤气变换反应催化活性的影响.结果表明,改性沉积-沉淀法制备的催化剂具有最好的催化活性,150 ℃时CO转化率达82.3%.该催化剂比表面积较大,金粒子尺寸(3~5 nm)较小且分布均匀.载体氧化铁以无定形态和结晶态共存,金与载体间存在较强的相互作用,这对催化剂活性的提高起着重要作用.","authors":[{"authorName":"李锦卫","id":"53c5afe5-aafb-4d25-a301-e16bf362aeb8","originalAuthorName":"李锦卫"},{"authorName":"詹瑛瑛","id":"ef633097-7a32-41a8-b5d6-5024f6822b2c","originalAuthorName":"詹瑛瑛"},{"authorName":"张凤利","id":"4f77bfa5-cd2e-4d39-bffb-a2febd05d809","originalAuthorName":"张凤利"},{"authorName":"林性贻","id":"59e14a5f-fa58-4479-8b5c-a5c5a6f43b58","originalAuthorName":"林性贻"},{"authorName":"郑起","id":"fadc7831-0053-4ce8-b442-b260df6b1e3c","originalAuthorName":"郑起"}],"doi":"","fpage":"346","id":"63c18cc0-5e02-406f-8dac-380dbe2dbb3f","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"874b8a42-583c-4077-9af7-41d8e922f7cc","keyword":"改性沉积-沉淀法","originalKeyword":"改性沉积-沉淀法"},{"id":"d897223e-e59d-472d-8229-f9bf1f338f21","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"48c1cd96-c92a-4807-bed8-d8b54d459586","keyword":"负载型金催化剂","originalKeyword":"负载型金催化剂"},{"id":"739fe3be-375c-477b-8dd9-5226e9349589","keyword":"水煤气变换反应","originalKeyword":"水煤气变换反应"}],"language":"zh","publisherId":"cuihuaxb200804008","title":"改性沉积-沉淀法制备Au/Fe2O3水煤气变换反应催化剂","volume":"29","year":"2008"},{"abstractinfo":"锆酸铅(PbZrO3,PZ)作为典型的ABO3型钙钛矿材料,在500 K附近发生从顺电相到反铁电相的相转变.以硝酸铅、氧氯化锆为原料,氨水为沉淀剂,采用共沉淀方法成功合成了PbZrO3粉体.利用差热分析(DTA)和热失重分析(TG)研究了共沉淀前驱体的热行为,利用XRD跟踪粉体的相演化,研究了煅烧温度对钙钛矿相锆钛酸铅形成的影响.发现共沉淀加强了Pb、Zr离子的混合,促进了钙钛矿相锆钛酸铅的形成,经600℃低温煅烧便可获得结晶良好的钙钛矿相PbZrO3粉体.","authors":[{"authorName":"刘涌","id":"08c50c82-84e3-423b-bdd8-feebc4eb0950","originalAuthorName":"刘涌"},{"authorName":"徐刚","id":"68a2b70e-5283-45cf-99ad-1ea2879d9399","originalAuthorName":"徐刚"},{"authorName":"宋晨路","id":"388bea30-0878-4573-a608-8e92f741bd6c","originalAuthorName":"宋晨路"},{"authorName":"韩高荣","id":"7ed3a07c-9639-442d-9214-559d03defee0","originalAuthorName":"韩高荣"}],"doi":"","fpage":"423","id":"da1ef4ff-d51b-4b17-ba91-6ad3219d44a3","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"31204615-1a0d-42f8-b762-8f7842c02f46","keyword":"锆钛酸铅","originalKeyword":"锆钛酸铅"},{"id":"03babfa9-9a7b-4263-876c-04457ddc4286","keyword":"铁电","originalKeyword":"铁电"},{"id":"9c231cff-40cb-43c4-adfc-42f79ddef57b","keyword":"合成","originalKeyword":"合成"},{"id":"e649a3a3-ac41-4f75-aaf5-3bd08b3d191b","keyword":"共沉淀","originalKeyword":"共沉淀"}],"language":"zh","publisherId":"xyjsclygc2008z2112","title":"共沉淀法合成PbZrO3粉体","volume":"37","year":"2008"}],"totalpage":5043,"totalrecord":50427}