{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对生产中常见的低碳铝镇静钢冷轧板孔洞缺陷特征进行了宏观和微观分析。结果表明:孔洞大致可分为三大类,正常拉裂类孔洞主要与基板中的夹杂有关;疤块孔洞与坑状孔洞为钢基掉块或异物压入基板形成,其它类孔洞形成主要与轧制工艺过程相关。","authors":[{"authorName":"方淑芳","id":"468f706e-1d26-46a3-bd60-a3ffe8017745","originalAuthorName":"方淑芳"},{"authorName":"邱涛","id":"5651b369-b850-4f89-aa24-f9b80e892661","originalAuthorName":"邱涛"},{"authorName":"曾庆江","id":"134d9327-7581-41dd-9664-14f77dc779bb","originalAuthorName":"曾庆江"},{"authorName":"陈兴元","id":"c36b1692-59a8-4f4a-97c7-85e6d8db3bf1","originalAuthorName":"陈兴元"},{"authorName":"王政","id":"62ac8ae6-40e2-4dc2-94ae-1a5befea8720","originalAuthorName":"王政"},{"authorName":"周渝","id":"2fe203bf-30fd-4e28-82da-4dba63f0a06a","originalAuthorName":"周渝"}],"doi":"10.3969/j.issn.1004-7638.2001.01.008","fpage":"40","id":"55f8ebd6-3b93-4d42-85ad-514460ae2d22","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"13be31a7-b360-4e70-abe7-d55f4b2cf2ce","keyword":"低碳铝镇静钢","originalKeyword":"低碳铝镇静钢"},{"id":"e7ba9d06-d909-4a9e-899e-1aec5ac5d341","keyword":"冷轧板","originalKeyword":"冷轧板"},{"id":"3f47ec8a-5d26-4bbc-ab46-5254cf3da55c","keyword":"缺陷特征","originalKeyword":"缺陷特征"}],"language":"zh","publisherId":"gtft200101008","title":"低碳铝镇静钢冷轧板中孔洞缺陷特征分析","volume":"22","year":"2001"},{"abstractinfo":"为了自动获得最具区分力的多维融合特征,提出了改进的ReliefF算法对带钢多维混合特征进行自动评估选择.针对ReliefF算法不能去除冗余特征的缺点,引入最大信息压缩准则去除冗余特征.在此基础上,采用遗传神经网络建立带钢缺陷识别的知识库,遗传算法可以自主地辨识最小的包含最优解的搜索空间,再由BP算法按负梯度方向进行权值及阈值的修正.研究结果表明:改进ReliefF算法为后续分类识别提供了最优的特征向量,减少了数据的运算量和存储量;遗传神经网络算法获得了在满足准确性前提下更高网络识别缺陷的效率.","authors":[{"authorName":"韩英莉","id":"9e79a8c5-930c-4e36-9bfc-0e5ca4e1b00d","originalAuthorName":"韩英莉"}],"doi":"10.13228/j.boyuan.issn1001-0963.20140168","fpage":"29","id":"292227f5-bd97-4cf9-a07b-ba76990885e1","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"79bf1d0d-16f3-4a98-a6b6-9bf4e1bbd49b","keyword":"带钢表面缺陷","originalKeyword":"带钢表面缺陷"},{"id":"db9154fa-8328-4a24-810b-ae752ac2cfe3","keyword":"特征提取","originalKeyword":"特征提取"},{"id":"ab05b59a-3c7b-4168-ba3a-cdd8454bd621","keyword":"分类识别","originalKeyword":"分类识别"},{"id":"0edb09d3-3dc8-4c1c-aece-6cd1e51ae6a1","keyword":"人工神经网络","originalKeyword":"人工神经网络"}],"language":"zh","publisherId":"gtyjxb201506006","title":"带钢表面缺陷多维混合特征提取及识别","volume":"27","year":"2015"},{"abstractinfo":"为研究电缆终端主绝缘含气隙缺陷下的局部放电(PD)及缺陷表面的形貌特征,通过在10 kV电缆终端上制作典型的气隙缺陷,利用电缆附件电热老化平台模拟终端的实际运行工况并加速老化,利用罗戈夫基线圈传感器提取终端在不同老化时刻下的PD数据,并用扫描电镜(SEM)对气隙缺陷的表面形貌特征进行观察。结合气隙缺陷内部的电场分布进一步分析终端PD的发展规律。结果表明:电缆终端的PD及气隙缺陷表面的形貌特征在不同老化时刻下呈现明显差异,缺陷表面XLPE的碳化过程提高了气隙缺陷的表面电导率,加快了缺陷表面电荷的耗散速度。","authors":[{"authorName":"吴科","id":"ac84b72e-f3ea-472d-8656-be031319959f","originalAuthorName":"吴科"},{"authorName":"马春亮","id":"c20d03a6-d4cc-42ee-a778-ddcf87f81526","originalAuthorName":"马春亮"},{"authorName":"周凯","id":"b67a9c6e-e63c-4cef-8dae-32c3d95e0bd0","originalAuthorName":"周凯"},{"authorName":"万利","id":"213363d2-43ac-43da-a23b-8136afdaf370","originalAuthorName":"万利"}],"doi":"","fpage":"38","id":"16ef9d40-1490-4ae3-844a-eedc68cba107","issue":"7","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"b96b07f4-7790-455b-9b25-ea85e5712172","keyword":"电缆终端","originalKeyword":"电缆终端"},{"id":"c94bde87-a06b-489e-a6fc-1aebe9b6564d","keyword":"气隙缺陷","originalKeyword":"气隙缺陷"},{"id":"2468a55e-c443-4768-a2d5-9b3f2c2fb823","keyword":"局部放电","originalKeyword":"局部放电"},{"id":"80477e27-7aee-42ff-9dc1-fb45d09e16e0","keyword":"电场分布","originalKeyword":"电场分布"},{"id":"fe19d134-7a7f-4775-a6eb-e48de015db55","keyword":"表面电导率","originalKeyword":"表面电导率"}],"language":"zh","publisherId":"jycltx201507008","title":"10 kV电缆终端绝缘气隙缺陷的局部放电及缺陷表面烧蚀特征","volume":"","year":"2015"},{"abstractinfo":"推导出一维掺杂声子晶体的转移矩阵,研究了一维掺杂声子晶体的缺陷模特性.结果表明一维声子晶体掺杂后会在禁带中心处出现缺陷模.缺陷模随杂质厚度的变化呈周期性地出现,在同一周期内,缺陷模的频率随杂质厚度增加近似呈线性减小,但缺陷模的半高宽近似不变.缺陷模的半高宽随两介质声阻抗的差值的减少而增大.","authors":[{"authorName":"刘启能","id":"ccf9cb9d-e67a-4265-8395-c746a11dd896","originalAuthorName":"刘启能"}],"doi":"","fpage":"87","id":"eafdd479-071a-4b9a-b7a7-04f298c27948","issue":"Z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"49026211-d926-4fb0-b561-9f36a5ae6112","keyword":"声子晶体","originalKeyword":"声子晶体"},{"id":"dc0937d8-5e6b-4f66-9d55-cee508b64b0e","keyword":"转移矩阵","originalKeyword":"转移矩阵"},{"id":"f096337e-f2d2-4b26-ae7c-e44de8159f09","keyword":"缺陷模","originalKeyword":"缺陷模"}],"language":"zh","publisherId":"cldb2008Z2026","title":"一维声子晶体的缺陷特征","volume":"22","year":"2008"},{"abstractinfo":"分析了钢管缺陷几何大小与缺陷漏磁信号(MFL)特征量之间关系,建立了一组全方位的钢管缺陷信号特征量,并将人工神经网络理论和算法应用于钢管缺陷预测.通过实验取得样本,在对网络进行训练的基础上,建立了基于钢管缺陷漏磁信号特征量和神经网络的缺陷预测模型,继而根据漏磁信号对缺陷进行定量预测.给出了实验结果,结果表明采用这种方法能够较好地实现管道缺陷的定量识别.","authors":[{"authorName":"杨涛","id":"705a6658-9a32-4ffa-b742-f59cbdcf7f0b","originalAuthorName":"杨涛"},{"authorName":"王太勇","id":"b68a09ca-a603-4e65-89fa-0452fad05f60","originalAuthorName":"王太勇"},{"authorName":"秦旭达","id":"816a2e3d-6124-4d07-b20e-14867572ad77","originalAuthorName":"秦旭达"},{"authorName":"蒋奇","id":"397c9c99-2a80-4272-837b-1929d7f9a6b9","originalAuthorName":"蒋奇"}],"doi":"","fpage":"50","id":"4cee99d1-18e4-4809-8e1e-50e58295f923","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1952398c-32ef-416d-986f-ecbe6872fa81","keyword":"漏磁检测","originalKeyword":"漏磁检测"},{"id":"4b1f0817-8b78-4115-91e5-7bc1fdc4c64a","keyword":"钢管","originalKeyword":"钢管"},{"id":"5f1f5207-9b3a-42df-8cbb-5618a667ad78","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"1888b356-9e42-478f-aa6e-43d87313735e","keyword":"特征量","originalKeyword":"特征量"},{"id":"86fa4129-377f-47c3-b633-b4a5b36b479b","keyword":"预测模型","originalKeyword":"预测模型"}],"language":"zh","publisherId":"gt200409012","title":"基于特征量和神经网络的钢管缺陷预测模型","volume":"39","year":"2004"},{"abstractinfo":"对冷轧板中发现的条痕缺陷特征进行了分析,探讨了该缺陷的形成原因.通过对热轧板中发现的条状缺陷特征分析,以及对条状缺陷热轧板的冷轧试验和热轧板酸洗出口处进行的缺陷跟踪,认为热轧板中的条状缺陷可以形成冷轧板中的条痕缺陷.综合分析认为连铸坯中的气泡是形成冷轧板表面条痕缺陷的主要原因.","authors":[{"authorName":"方淑芳","id":"35ae612f-6993-482e-9bde-7a6a93604b6b","originalAuthorName":"方淑芳"}],"doi":"10.3969/j.issn.1004-7638.2002.02.013","fpage":"59","id":"0c52ae59-33e8-4d39-9524-5daca01f7a38","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"c51fbd57-3bf5-4e09-bbac-7d056cda4598","keyword":"冷轧板","originalKeyword":"冷轧板"},{"id":"e845ccfe-48e0-4b5d-a421-a7bb16d4167c","keyword":"条痕缺陷","originalKeyword":"条痕缺陷"},{"id":"ecd963d5-2a51-4749-97dc-fc2743a1ecbc","keyword":"特征","originalKeyword":"特征"},{"id":"12d06005-d13e-4d1b-b584-f7ed25330263","keyword":"形成原因","originalKeyword":"形成原因"}],"language":"zh","publisherId":"gtft200202013","title":"冷轧板条痕缺陷特征及形成原因探讨","volume":"23","year":"2002"},{"abstractinfo":"针对带钢表面的划痕、黑斑、翘皮、辊印、褶皱和压印6种典型缺陷,提取了样本图像的灰度、纹理和几何形状特征等32维特征向量。基于遗传算法对32维特征向量进行降维优化选择,选择了其中的20维以进行缺陷图像类型的分类。利用BP神经网络对降维前后的6种典型带钢表面缺陷分类进行对比识别,并同主成分降维方法进行了对比,验证了所提取的带钢表面缺陷图像特征及其遗传算法降维的有效性。","authors":[{"authorName":"汤勃","id":"53421a1d-f709-4542-bd11-515b8c1253c5","originalAuthorName":"汤勃"},{"authorName":"孔建益","id":"227f3406-95a0-4843-9165-3fb8dab6a583","originalAuthorName":"孔建益"},{"authorName":"王兴东","id":"f5c6af80-8589-4e6c-ad06-e96ce6e9965e","originalAuthorName":"王兴东"},{"authorName":"侯宇","id":"28be5fc5-0a32-4014-b2c7-9356ae5fca1c","originalAuthorName":"侯宇"}],"doi":"","fpage":"59","id":"0a168b7a-26f5-44e5-b634-d9434aa3f312","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6ea993bf-8d9c-4a9d-ab21-71c26091d684","keyword":"带钢表面缺陷","originalKeyword":"带钢表面缺陷"},{"id":"3348e640-1c29-47ca-a0da-015bba94f283","keyword":"特征提取","originalKeyword":"特征提取"},{"id":"23830f4c-8766-46c2-a239-ffc746585544","keyword":"降维","originalKeyword":"降维"},{"id":"fe89f3cb-051d-45ce-a315-d45161d8e919","keyword":"识别与分类","originalKeyword":"识别与分类"}],"language":"zh","publisherId":"gtyjxb201109016","title":"基于遗传算法的带钢表面缺陷特征降维优化选择","volume":"23","year":"2011"},{"abstractinfo":"针对带钢表面的划痕、黑斑、翘皮、辊印、褶皱和压印6种典型缺陷,提取了样本图像的灰度、纹理和几何形状特征等32维特征向量。基于遗传算法对32维特征向量进行降维优化选择,选择了其中的20维以进行缺陷图像类型的分类。利用BP神经网络对降维前后的6种典型带钢表面缺陷分类进行对比识别,并同主成分降维方法进行了对比,验证了所提取的带钢表面缺陷图像特征及其遗传算法降维的有效性。","authors":[{"authorName":"汤勃,孔建益,王兴东,侯宇","id":"5f55df69-1afa-4835-ae80-b7a044435ae8","originalAuthorName":"汤勃,孔建益,王兴东,侯宇"}],"categoryName":"|","doi":"","fpage":"59","id":"e329cbab-8fef-4b61-b9c1-e80c93453223","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cdb019af-35cd-44af-97cc-aab2a5028d01","keyword":"带钢表面缺陷 ","originalKeyword":"带钢表面缺陷 "},{"id":"2629f769-19f7-4a3b-83b8-738e6d7212ec","keyword":" feature extraction ","originalKeyword":" feature extraction "},{"id":"3579e3d4-f92e-45f7-9ef0-2c56afbeb729","keyword":" dimensions reduction ","originalKeyword":" dimensions reduction "},{"id":"57fd1697-8f83-4f0b-ae97-5e405c8fb56c","keyword":" recognition and classification","originalKeyword":" recognition and classification"}],"language":"zh","publisherId":"1001-0963_2011_9_7","title":"基于遗传算法的带钢表面缺陷特征降维优化选择","volume":"23","year":"2011"},{"abstractinfo":"为了将金属磁记忆检测技术应用于焊缝不同典型缺陷的定性和定量评价上,对Q235钢未焊透和固体夹渣两种缺陷进行实验研究,通过比较0、150和230 kN不同载荷级别下的磁记忆信号检测结果,提取了焊缝未焊透和夹渣两种缺陷的不同磁记忆信号特征,结果表明,未焊透的磁记忆特征信号波宽D的变化更为突出,而固体夹渣的磁记忆特征信号梯度K变化明显,并进一步从磁记忆机理的角度加以推导分析.分别以相应载荷级别下焊缝X射线检测结果作为依据,验证了磁记忆特征信号在焊缝缺陷种类确定和缺陷严重程度定量评价上的可行性与有效性.","authors":[{"authorName":"邢海燕","id":"00092de3-71b8-4a61-b863-e49dc6100052","originalAuthorName":"邢海燕"},{"authorName":"徐敏强","id":"3f25d94e-218a-4364-8720-1298c3c06037","originalAuthorName":"徐敏强"},{"authorName":"陈鑫彧","id":"7ff51d1f-3312-48fa-8495-bb1034593d31","originalAuthorName":"陈鑫彧"},{"authorName":"秦萍","id":"bd445742-a4b5-465b-af57-70e8228e3ce6","originalAuthorName":"秦萍"}],"doi":"","fpage":"65","id":"2727e64e-1285-4754-80fd-1f39d932b581","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"ffd86868-8e52-4628-a240-9d8df60a156f","keyword":"磁记忆检测","originalKeyword":"磁记忆检测"},{"id":"21cb084c-8049-45d1-b316-6c0e61ff1bbf","keyword":"焊缝缺陷","originalKeyword":"焊缝缺陷"},{"id":"84212c96-2aca-43c4-af69-28c946f62798","keyword":"信号特征","originalKeyword":"信号特征"}],"language":"zh","publisherId":"clkxygy201106012","title":"焊缝两种典型缺陷的磁记忆特征对比","volume":"19","year":"2011"},{"abstractinfo":"研究了热补仪修理复合材料层压板结构的缺陷特征.金相显微分析结果表明,当修补层数为2层时,样品没有任何缺陷产生;当修补层数增加到4层时,修补层内出现气孔缺陷;当修补层数增加到6层时,除了修补层内出现大量气孔缺陷以外,胶膜层也出现气孔,导致弱粘接/脱粘缺陷的产生.超声检测的结果与金相显微分析一致,很好地再现了上述缺陷.","authors":[{"authorName":"张婷","id":"db729988-7f85-433b-9f9f-eaf0e12f144f","originalAuthorName":"张婷"},{"authorName":"刘奎","id":"c4e9a18c-1b59-4331-ae32-cd910ea86bea","originalAuthorName":"刘奎"},{"authorName":"王婷婷","id":"8e118aa8-eb42-4f45-abc0-29b040d3dae5","originalAuthorName":"王婷婷"}],"doi":"10.11868/j.issn.1005-5053.2015.1.011","fpage":"66","id":"cd377077-2cd5-4eef-9c86-e639195df897","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"ee8cc62e-b38f-4d73-8a5b-eeb6497df583","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"fdd88fe2-40dc-42c6-996e-a08247690ee2","keyword":"修理","originalKeyword":"修理"},{"id":"10b39782-2013-43e5-b24c-f6fd626f8af7","keyword":"气孔缺陷","originalKeyword":"气孔缺陷"},{"id":"9691b55d-8a41-41f2-8a6a-bba565859a02","keyword":"超声检测","originalKeyword":"超声检测"},{"id":"bbacf987-833c-49ba-b702-e88b7641b7e6","keyword":"金相显微检测","originalKeyword":"金相显微检测"}],"language":"zh","publisherId":"hkclxb201501011","title":"复合材料修理结构的缺陷特征与超声信号","volume":"35","year":"2015"}],"totalpage":1874,"totalrecord":18735}