{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以单质Bi,Sb和Te粉末为原材料,通过真空电弧等离子体蒸发法合成了(Bi<,x>Sb<,1-x>)<,2>Te<,3>热电粉末材料.采用X射线衍射(XRD)、能谱分析(EDS),场发射扫描电子显微术(FE-SEM),透射电子显微术(TEM)和选区电子衍射(SAED)分析方法对(Bi<,x>Sb<,1-x>)<,2>Te<,3>粉末材料的物相结构、成分和形貌进行了表征.XRD图谱的3强衍射峰分别为(015),(1010)和(110),(Bi<,x>Sb<,1-x>)<,2>Te<,3>纳米粉末的XRD图谱与标准XPD图谱峰(49-1713)相对应,宽化的衍射峰表明了粉末的晶粒具有纳米尺度.能谱定量分析表明Bi和Sb的原子百分比分别为18.1%,20.3%,两者原子百分比之和为38.4%,Te的原子百分比是61.6%.场发射扫描电子显微分析表明纳米粉末颗粒尺寸比较均匀,粉末存在团聚现象,大多数粉末都呈椭球形.透射电子显微分析表明(Bi<,x>Sb<,1-x>)<,2>Te<,3>纳米粉末的平均粒径约为50 mm,粉末呈不规则的多面体结构,还有一些薄片状和棒状的结构,这与Bi<,2>Te<,3>基半导体化合物的高度各向异性是一致的.(Bi<,x>Sb<,1-x>)<,2>Te<,3>纳米粉末的选区电子衍射图表明每一个颗粒是由许多小晶核组成的,证明了颗粒是以纳米尺度生长.由于晶粒取向随机,且晶粒细小引起有许多衍射斑组成的衍射环的宽化,揭示了(Bi<,x>Sb<,1-x>)<,2>Te<,3>纳米粉末的多晶结构.","authors":[{"authorName":"段兴凯","id":"d872cad5-7993-41a0-ad1a-8871eb9cfb7b","originalAuthorName":"段兴凯"},{"authorName":"江跃珍","id":"18ba300c-4e60-4cb2-a814-69ccc492e8a2","originalAuthorName":"江跃珍"}],"doi":"10.3969/j.issn.0258-7076.2011.03.014","fpage":"394","id":"d2040420-d0ad-4bb6-9da4-8677920e2e51","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"9c4c7e89-e1b0-4261-bc3f-d9c5f1e3a9ea","keyword":"(BixxSb1-x)2Te3","originalKeyword":"(BixxSb1-x)2Te3"},{"id":"4a10f3af-0416-4334-bca8-f75d47787012","keyword":"真空电弧等离子体","originalKeyword":"真空电弧等离子体"},{"id":"43ad22d9-7f74-4290-a6e4-7b10162645b1","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"04125a48-24f9-4965-b787-246155154b66","keyword":"纳米粉末","originalKeyword":"纳米粉末"}],"language":"zh","publisherId":"xyjs201103014","title":"真空电弧等离子体合成(BixSb1-x)2Te3纳米粉末材料","volume":"35","year":"2011"},{"abstractinfo":"电弧等离子体具有温度高、能量集中、功率可调、气氛可控、无电极损耗、噪音低、设备简单、电热转换效率高等特点,是一种特殊的洁净高温热源,为高质量冶炼提供了优良环境,是特种合金材料冶炼理想的热源之一.自20世纪90年代本文作者开始研究开发大功率电弧等离子体发生器,先后应用于多种材料的工业冶炼生产和冶金效果研究实践之中,取得了一定经济效益和技术成果.本文介绍自行研发的已经成功应用于工业生产或冶金效果研究的几种电弧等离子体冶金技术.","authors":[{"authorName":"万树德","id":"bd5e1faf-05c4-40f7-9ef7-bf89455d674c","originalAuthorName":"万树德"},{"authorName":"汪海","id":"067e3510-1f63-41a5-b3a7-71ee85463e9a","originalAuthorName":"汪海"}],"doi":"","fpage":"81","id":"feade824-668c-42a1-90cc-f49cf9f4c594","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"0fcbcf85-090e-4b4a-b563-0617f78202bc","keyword":"电弧等离子体","originalKeyword":"电弧等离子体"},{"id":"80ba7b48-57b6-4f1f-b39a-a1b794f925f7","keyword":"冶金技术","originalKeyword":"冶金技术"},{"id":"b2478433-d091-4a50-b101-7c221fb0aff9","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"clyyjxb201302001","title":"电弧等离子体冶金技术的实际应用","volume":"12","year":"2013"},{"abstractinfo":"等离子体电弧的数值模拟研究对其在工业中的应用有重要的意义.详细阐述等离子体电弧数值模拟研究的发展过程,分别包括自由等离子体电弧和约束等离子体电弧的研究进展,等离子体电弧数学模型的完善主要体现在假设条件的减少上;介绍等离子体电弧数值模拟的方法与步骤,并指出ANSYS、FLUENT等数值分析软件都可以求解等离子体电弧数学模型;还提出综合考虑等离子体电弧的流动状态和三维约束等离子体电弧的数值模拟研究是未来的研究方向.","authors":[{"authorName":"殷凤良","id":"a28a1f8f-e7f4-46d4-89cb-61659e890c8e","originalAuthorName":"殷凤良"},{"authorName":"胡绳荪","id":"544d04a9-074c-4e28-a8db-a88f9c32cf16","originalAuthorName":"胡绳荪"},{"authorName":"高忠林","id":"99a16199-ecc3-4caf-8914-f05b5dec9f68","originalAuthorName":"高忠林"},{"authorName":"赵立志","id":"367af5b9-6b07-4a38-b84f-911a2c148d17","originalAuthorName":"赵立志"}],"doi":"10.3969/j.issn.1004-244X.2007.06.017","fpage":"59","id":"4e104dcf-05bf-4b45-bec1-086cbe3e0235","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"e7411b2b-1a9d-436a-a1e0-d49e8935f78c","keyword":"等离子体电弧","originalKeyword":"等离子体电弧"},{"id":"89c90f9d-76f0-42ea-a016-1581d1a15eb4","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"050fb36a-96bd-4ab2-a79f-5fe51652d8b5","keyword":"综述","originalKeyword":"综述"},{"id":"449438f2-bae4-4ff8-b6af-1a29e5e7e52a","keyword":"软件","originalKeyword":"软件"},{"id":"f663cd29-2797-4c81-b782-3d0874a75617","keyword":"流动状态","originalKeyword":"流动状态"}],"language":"zh","publisherId":"bqclkxygc200706017","title":"等离子体电弧数值模拟的研究进展","volume":"30","year":"2007"},{"abstractinfo":"本文主要对氢等离子体电弧熔炼技术在难熔金属提纯方面的应用进行了综述.介绍了等离子体电弧炉的原理与结构,重点讨论氢等离子体电弧熔炼技术在难熔金属提纯方面的优势,最后阐述了H2在熔炼提纯中发挥的重要作用和机理.","authors":[{"authorName":"李国玲","id":"cda775dc-5548-46ac-88df-16caf464018d","originalAuthorName":"李国玲"},{"authorName":"田丰","id":"7976837f-e51b-4d2a-9c65-23c13dbee37e","originalAuthorName":"田丰"},{"authorName":"李里","id":"1e68d447-0f8f-49f1-9d8c-fb2fbc5f374f","originalAuthorName":"李里"},{"authorName":"田文怀","id":"927d191f-22e8-4c0d-9704-051240af513b","originalAuthorName":"田文怀"},{"authorName":"李星国","id":"30e51a87-4be9-426c-a52a-bc72c7292259","originalAuthorName":"李星国"}],"doi":"","fpage":"775","id":"3e07f642-0b7f-475f-b9f6-13d12e37bd20","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"57e79b6a-c8fd-4f20-82df-77ff5e6eb299","keyword":"氢等离子体电弧熔炼","originalKeyword":"氢等离子体电弧熔炼"},{"id":"59ecbd37-024e-4298-91fd-11f137dee96f","keyword":"金属","originalKeyword":"金属"},{"id":"6f899c10-b3bf-489e-a762-db41046abb1d","keyword":"提纯","originalKeyword":"提纯"}],"language":"zh","publisherId":"xyjsclygc201503050","title":"氢等离子体电弧熔炼技术在难熔金属提纯中的应用","volume":"44","year":"2015"},{"abstractinfo":"为了探究等离子体在玻璃熔制中的应用,我们采用直流电弧等离子体对玻璃配合料进行熔化,研究了不同功率下配合料的熔化情况.利用X射线衍射(XRD)、扫描电镜(SEM)、热质联用(TG-MS)、X射线荧光光谱(XRF)等手段对样品的结构、断面形貌、质量变化、成分进行表征.结果表明:随着等离子体功率的增加,样品的玻璃化程度提高,质量损失增大,熔化后样品的成分变化较小.等离子体的使用可显著提高玻璃熔化过程中的热交换效率,实现了配合料的快速熔化.","authors":[{"authorName":"丁奇亮","id":"e35d5c92-e62c-45b4-a929-6d60d5be2604","originalAuthorName":"丁奇亮"},{"authorName":"韩建军","id":"5e7ec712-b1b1-4b1c-94ef-9f2f32dac74f","originalAuthorName":"韩建军"},{"authorName":"李国强","id":"79244b0d-2262-4985-8a50-6a83a712ea3d","originalAuthorName":"李国强"},{"authorName":"赵修建","id":"b4808d37-9123-4a60-904a-9e5f5c45782a","originalAuthorName":"赵修建"}],"doi":"","fpage":"432","id":"54d497a0-cbfa-4551-b308-3684c5d04ecc","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"4323a4d5-24da-425f-9549-3b0efcdf98ca","keyword":"直流电弧","originalKeyword":"直流电弧"},{"id":"3006f3b7-75f5-4758-8f5c-9d27e0a3ed61","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"eb2129e2-dbd1-422a-92d2-dfcfbec29578","keyword":"玻璃配合料","originalKeyword":"玻璃配合料"},{"id":"46f5a0ef-9897-4b5e-9466-8791c59bca73","keyword":"熔化","originalKeyword":"熔化"}],"language":"zh","publisherId":"clkxygc201303023","title":"直流电弧等离子体熔化玻璃配合料","volume":"31","year":"2013"},{"abstractinfo":"约束弧等离子体电弧法用等离子体高温热源激发高能粒子的化学反应,并与骤冷技术结合构成一个制备金属纳米粉体或化合物纳米粉末材料的等离子体过程,能极好地制备高溶点(例:Ni,Fe,C等)或低溶点(例:Al,Zn等)的纳米粉末,是当前极具工业化生产应用前景的方法之一。用约束弧等离子体电弧法制备了纳米Zn粉末,用XRD,TEM,TG,DTA技术研究了纳米Zn粉末的结构、晶粒大小、晶粒形貌和热稳定性。结果表明,该粉体平均粒径小于42nm,晶粒形貌为带状,热稳定性好。此外该粉体具有高比表面积,可用作化学反应的催化剂。","authors":[{"authorName":"黎明","id":"7286585a-2e80-40ca-ab7c-c36823723e88","originalAuthorName":"黎明"},{"authorName":"刘雅超","id":"4230374d-fbfa-4c93-a6c5-c3bfd5c0037c","originalAuthorName":"刘雅超"},{"authorName":"郭慧尔","id":"49c6241c-a869-45f5-9f30-e8e4b3174613","originalAuthorName":"郭慧尔"},{"authorName":"闫志巾","id":"ddd8026e-bb27-4cd5-ab5e-71aa69fcb512","originalAuthorName":"闫志巾"},{"authorName":"吕惠民","id":"22ff032c-384f-4621-8131-a0c013dcb4c1","originalAuthorName":"吕惠民"},{"authorName":"阎鹏勋","id":"49329923-8a8a-435b-9590-d6e4d479c604","originalAuthorName":"阎鹏勋"}],"doi":"","fpage":"61","id":"602f374e-76dc-4e6c-8c14-34a640752aaa","issue":"12","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"b4eefd5a-db06-4b95-97e6-4fed83d1cb51","keyword":"Zn纳米颗粒","originalKeyword":"Zn纳米颗粒"},{"id":"c0a84740-71f5-43ae-bd56-44571651b383","keyword":"约束弧等离子体电弧法","originalKeyword":"约束弧等离子体电弧法"},{"id":"71a90f12-3518-4bf7-83a5-e21705d86d56","keyword":"晶粒形貌","originalKeyword":"晶粒形貌"}],"language":"zh","publisherId":"zgcljz201112021","title":"等离子体电弧法制备的带状纳米锌的表征","volume":"30","year":"2011"},{"abstractinfo":"基于局域热力学平衡假设,建立三维非稳态等离子电弧的湍流模型,应用计算流体力学软件ANSYS CFX模拟了氩/氢等离子喷枪内阳极弧根的再附着过程、电弧与气流的相互作用以及等离子体温度和速度分布.结果表明,在冷气流推动下,阳极弧根向喷嘴下游移动,电弧被拉长,弧电压升高,电场强度增大.当电弧向下游移动到电场强度足够大时,电弧击穿并形成新的弧根.喷枪内电弧波动导致喷枪出口等离子体最大温度和最大速度发生波动,滞后时间为10μs.喷枪内的流动与传热具有明显的三维特征,与温度分布相比,速度分布的三维特征更明显且更向中心处集中.","authors":[{"authorName":"叶向艺","id":"38816d8d-cac1-45b2-9835-0f18a68217b4","originalAuthorName":"叶向艺"},{"authorName":"郑振环","id":"ea7ed153-4420-4930-a509-dec5a04097e4","originalAuthorName":"郑振环"},{"authorName":"李强","id":"a7754aca-e237-45c5-8fa9-c76aa6e8fecd","originalAuthorName":"李强"}],"doi":"","fpage":"96","id":"b215082e-cf35-4f00-ac40-78e1e352bd41","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f940daa3-097b-4eac-bf05-8762b603464c","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"2f9cf207-0f0f-41f0-8d05-ef6f6af9d98a","keyword":"三维模拟","originalKeyword":"三维模拟"},{"id":"c8209aa1-ba1c-4e41-aa3f-e4119e57d020","keyword":"非稳态模拟","originalKeyword":"非稳态模拟"},{"id":"8f89724a-77f3-4a90-958d-e3303c6f3078","keyword":"电弧动力学","originalKeyword":"电弧动力学"},{"id":"01e83bc4-21e6-4fa5-9fa1-12fa6f76bec1","keyword":"等离子体特性","originalKeyword":"等离子体特性"}],"language":"zh","publisherId":"clkxygc201301020","title":"等离子喷枪内电弧动力学与等离子体特性的三维数值模拟","volume":"31","year":"2013"},{"abstractinfo":"本文采用磁流体动力学(MHD)模型对直流等离子体自由燃烧电弧和电弧炉内部的流动与传热进行了数值模拟研究.通过对基于磁矢量势描述的电磁场方程组和流体力学方程组的耦合迭代计算,求解得到了流体的温度场和速度场等,计算结果清晰地反映出等离子体电弧的高温阴极射流现象,并与同行的实验和数值结果进行了对比.本模拟方法和结果对于电弧炉的工业应用和优化设计有重要的指导意义.","authors":[{"authorName":"邓晶","id":"4fa7d0db-17d0-4040-af6e-74c62e6c5dc2","originalAuthorName":"邓晶"},{"authorName":"李要建","id":"2a350848-c8b1-40f3-ab57-77388d03abb7","originalAuthorName":"李要建"},{"authorName":"王蕊","id":"4b431d68-4aea-480b-ad90-fecb51f59de3","originalAuthorName":"王蕊"},{"authorName":"田君国","id":"9663b1b0-5ebb-4f33-a0e4-3f1f1972d00e","originalAuthorName":"田君国"},{"authorName":"徐永香","id":"b1f99726-5a82-4f35-b264-f6ee0a353fd1","originalAuthorName":"徐永香"},{"authorName":"盛宏至","id":"2ef656f0-d061-43ba-8338-e576de15985b","originalAuthorName":"盛宏至"}],"doi":"","fpage":"879","id":"ba53e5b2-d557-4aa4-bef8-b1dd77802c60","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"aaf31ca4-46a0-42fe-9fb9-3cea34f1e8ae","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"8a0c27bb-4281-4c42-9d04-0b6430aa96cd","keyword":"电弧","originalKeyword":"电弧"},{"id":"0aee1181-91e3-4165-b3f3-e9fe4782f6d6","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"1716f1fc-01af-4345-a3ac-beab0be39055","keyword":"磁流体","originalKeyword":"磁流体"}],"language":"zh","publisherId":"gcrwlxb201005041","title":"等离子体电弧炉内流动与传热数值模拟","volume":"31","year":"2010"},{"abstractinfo":"采用高纯锡,通过自行设计的直流电弧等离子体蒸发设备制备了纯净的纳米锡粉.利用X射线衍射(XRD)、透射电子显微镜(TEM)和选区电子衍射(ED)以及Simple PCI软件对样品的成分、形貌、晶体结构和粒径分布进行了分析.结果表明:在本文制备工艺参数条件下,该设备可以成功制备平均粒径为26至49nm的纳米锡粉;粉体的产率和粒径随充气压力升高而增大.所制备的纳米锡粉颗粒细小,纯净,为多晶结构;通过分析不同腔体内的粉体粒径,发现距离钨电极越远,所形成的颗粒尺寸越大.","authors":[{"authorName":"张振忠","id":"ad9e5aef-9062-4d01-92c5-a9eb4cbd1b30","originalAuthorName":"张振忠"},{"authorName":"安少华","id":"a4540f3e-97b9-472f-b40b-bf7c998a59c2","originalAuthorName":"安少华"},{"authorName":"赵芳霞","id":"3d9c1e80-4847-4d71-b996-35354844510d","originalAuthorName":"赵芳霞"},{"authorName":"王超","id":"e3778e1f-3cda-4e5a-b1d7-352f68216d75","originalAuthorName":"王超"}],"doi":"","fpage":"9","id":"dd01b9c0-3f0a-4970-9ec5-c83d9ea7b68a","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"ca8ef85a-d7a2-47af-a698-a6a5ffd73e75","keyword":"直流电弧等离子体蒸发","originalKeyword":"直流电弧等离子体蒸发"},{"id":"d2a8e624-b13d-4001-83cd-c3fa2d3d8178","keyword":"纳米锡粉","originalKeyword":"纳米锡粉"},{"id":"2f11c465-d99e-4147-a711-07aec6a5ce78","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"jsrclxb200805003","title":"直流氢电弧等离子体蒸发法制备纳米锡粉","volume":"29","year":"2008"},{"abstractinfo":"以碳纳米管、碳洋葱、石墨烯为代表的碳纳米材料在能源、环境等领域表现出了优异的潜在应用价值,本文基于近年来国内外研究者利用液体等离子体法制备碳纳米材料的研究工作,对比了液氮,去离子水,盐溶液及有机溶剂作为不同放电介质的优缺点,并对其相关的反应机理进行了分析与讨论,指出了液体等离子体放电制备纳米炭材料这一领域的研究进展,对于深刻认识液体等离子体放电的概念与原理、完善实验与理论研究方法、拓展应用范围和尽早实现工业应用提出了建议与展望.","authors":[{"authorName":"段培","id":"149dc542-28be-4241-a1e9-0e6fd88ed41d","originalAuthorName":"段培"},{"authorName":"李海","id":"11a28d4f-a02a-4b6b-8ea2-ed4699a31641","originalAuthorName":"李海"},{"authorName":"闫晓丽","id":"3b0b8d62-2cfd-4cfd-a96e-de33002942e3","originalAuthorName":"闫晓丽"},{"authorName":"章海霞","id":"601e4ba1-3c63-4ef0-a84c-2ccea8a8302c","originalAuthorName":"章海霞"},{"authorName":"许并社","id":"41b2a0fe-1213-4b40-9391-defaf6387f4e","originalAuthorName":"许并社"},{"authorName":"郭俊杰","id":"7b805cb6-e8b3-48d3-99cf-bf14ac78d311","originalAuthorName":"郭俊杰"}],"doi":"","fpage":"251","id":"30f4dc79-1a00-4b14-8eee-3c97bc25cbeb","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"581e5f87-522b-4a77-bb43-610426e681e2","keyword":"纳米炭材料","originalKeyword":"纳米炭材料"},{"id":"7e6e47ef-07cb-4632-9076-48275ffc995a","keyword":"液体等离子体放电","originalKeyword":"液体等离子体放电"},{"id":"b83150d4-b931-464f-acf5-9da152e1370d","keyword":"放电机理","originalKeyword":"放电机理"}],"language":"zh","publisherId":"rgjtxb98201702010","title":"液体介质等离子体电弧法制备纳米炭材料研究进展","volume":"46","year":"2017"}],"totalpage":4606,"totalrecord":46056}