{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在实验室冶炼了一种低碳高强度微合金钢,进行了轧制和回溶试验,对轧制试样进行了拉伸试验、检验了金相组织,并用TEM对比分析了不同加热温度下试样的析出物形貌、成分、尺寸.结果表明,1280℃加热保温后轧制产品的性能优于1180℃加热轧制后产品的性能;两种加热温度下轧制试样的组织都由铁素体和珠光体组成,晶粒尺寸基本相同;轧制试样的析出物均为(Ti,Nb)(C,N)复合析出,但1280℃加热温度的试样析出更加细小、数量更多.析出强化理论计算表明,加热温度高的试样析出强化要比加热温度低的试样高131 MPa.回溶试验表明,铸坯在1280℃保温1.5h后,析出物基本回溶,而1180℃保温1.5h后,析出物不能充分溶解,证明了加热温度对钛铌微合金化高强钢析出强化有较大的影响.","authors":[{"authorName":"甘晓龙","id":"da756798-b136-4515-84b5-24e5130bdadf","originalAuthorName":"甘晓龙"},{"authorName":"岳江波","id":"ec3ffc32-c5c8-4b2c-93e2-c8a526537389","originalAuthorName":"岳江波"},{"authorName":"张青","id":"580f0eb3-981a-4e7b-9ba7-f43805033ac4","originalAuthorName":"张青"}],"doi":"","fpage":"71","id":"413e1e34-cf12-42fa-ad6e-ca8c78c4079c","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"b09352a1-bdcb-4b29-8986-bae737dd0d86","keyword":"高强钢","originalKeyword":"高强钢"},{"id":"846586eb-558c-4a29-a69c-81dd9af28aae","keyword":"Ti-Nb复合微合金化","originalKeyword":"Ti-Nb复合微合金化"},{"id":"d08083d8-04cd-4b15-966c-4ddfeed66b08","keyword":"(Ti,Nb)(C,N)复合析出","originalKeyword":"(Ti,Nb)(C,N)复合析出"},{"id":"8d9822cb-86c9-4946-988f-fb4c22758e43","keyword":"析出强化","originalKeyword":"析出强化"},{"id":"eff2dfa0-3dab-40ec-9fc3-a95c36ad26c1","keyword":"加热温度","originalKeyword":"加热温度"}],"language":"zh","publisherId":"gtft201202014","title":"加热温度对钛铌复合微合金化高强钢析出和性能的影响","volume":"33","year":"2012"},{"abstractinfo":"在1×10-3/s应变速率下对含Nb钢连铸坯试样的高温延塑性进行了测定.在温度降至1100℃以下的变形试样中NbCN)开始由γ晶中析出,1000-950℃之间析出NbCN)较粗大并在钢中零散分布;温度降至900℃左右时,大量微细的NbCN)在γ晶界和晶粒内析出,尺寸平均为5-8nm,间距在30nm左右,造成了γ相区低温域合Nb钢延塑性的急剧减少;温度降至800℃时,先共折铁素体开始在γ晶界析出,钢的延塑性继续降低.由于含Nb钢试样共折转变的推迟,与不含Nb钢相比,其第Ⅲ脆性温度域向低温延伸.","authors":[{"authorName":"王新华","id":"6f9c2ed4-44dc-406a-8eef-102ef9673dc9","originalAuthorName":"王新华"},{"authorName":"昌波","id":"da9c94a6-1fd2-4d8c-9061-a9b0e59baa9b","originalAuthorName":"昌波"},{"authorName":"李景捷","id":"e0d686b2-719b-4979-8819-8c31783c0f3a","originalAuthorName":"李景捷"},{"authorName":"张立","id":"b7f88019-6cc5-4c1f-9411-3a8ffaf30c3c","originalAuthorName":"张立"},{"authorName":"叶锦渭","id":"4de77d27-9edf-41a5-9814-d470f2dc96ce","originalAuthorName":"叶锦渭"}],"categoryName":"|","doi":"","fpage":"485","id":"a6ee4bef-614f-4492-9f11-e063b2a7d491","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"cd181a95-230b-4aaa-a61b-450820e825a7","keyword":"含铌钢","originalKeyword":"含铌钢"},{"id":"4102ee40-ec01-4f04-9f8e-17675125823f","keyword":" continuous cast slab","originalKeyword":" continuous cast slab"},{"id":"4f206322-fdf7-46d0-a0ce-dd55240f60eb","keyword":" hot ductility","originalKeyword":" hot ductility"},{"id":"3bd75b47-db2d-416f-b18d-f7314ccc60c8","keyword":" Nb(C","originalKeyword":" Nb(C"}],"language":"zh","publisherId":"0412-1961_1997_5_3","title":"700-1000℃间含Nb钢铸坯的延塑性降低与Nb(C,N)析出","volume":"33","year":"1997"},{"abstractinfo":"通过观察萃取复型试样和薄膜试样,分析X100管线钢中析出相;结合析出析出动力学模型,讨论在先析出TiN相界面形核和位错线形核动力学特征.结果表明:X100管线钢析出相多呈复合析出,先析出的TiN相周边附着许多富Nb的细小析出相,更加细小的椭圆形析出相富含Nb,方形析出相富含Ti.Nb(C,N)析出动力学计算结果表明:Nb(C,N)在TiN相界面形核较位错线形核具有较大的临界形核半径、更高的最大相对形核率温度和析出鼻点温度,形变储能对鼻点温度的影响近似线性关系.","authors":[{"authorName":"齐亮","id":"584ff451-b276-4512-98ad-4c9ef71f8753","originalAuthorName":"齐亮"},{"authorName":"张迎晖","id":"1caf2231-071f-4b8e-98b3-61c30388393c","originalAuthorName":"张迎晖"},{"authorName":"汪志刚","id":"5e645e40-103d-4b9e-acdc-6417490c5479","originalAuthorName":"汪志刚"},{"authorName":"贺玲慧","id":"18b0efb5-19a4-49e4-b0df-5ae5f559a3f2","originalAuthorName":"贺玲慧"}],"doi":"","fpage":"75","id":"df6e18ac-753e-461f-89ba-773de0f0a46e","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fa596136-b45a-489d-bdb4-d82c0e31fe4b","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"e168e947-b602-435a-9060-d7ceb0b8dffb","keyword":"碳氮化物","originalKeyword":"碳氮化物"},{"id":"e24ba3f5-b139-437f-aac7-c130cacfc1fc","keyword":"析出","originalKeyword":"析出"},{"id":"679f873e-e45e-4181-a39d-ad0af9b18a0e","keyword":"鼻点温度","originalKeyword":"鼻点温度"},{"id":"bcc30091-4aaf-4570-9426-c118f367263d","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"jsrclxb201411014","title":"X100管线钢中NbTi碳氮化物复合析出行为","volume":"35","year":"2014"},{"abstractinfo":"建立了Fe-C-N-Al-Ti-V系在奥氏体中析出的热力学模型,计算结果显示:尽管VN(VC)的浓度积较大,但是通过增加钒的含量和氮的含量,也可以促进V在奥氏体中的析出,在氮含量较高的情况下,碳对V的析出影响较小;即使增加V、CN的含量,V(CN)也主要是在较低的奥氏体温度析出,在较高温度析出较少;正因为V(CN)的浓度积较大,与Nb(NC)不同,在轧制之前采用较低的加热温度就可以使大部分的钒都固溶到奥氏体中,这样可以获得较小的初始奥氏体晶粒.","authors":[{"authorName":"常立忠","id":"e7acaf43-f31a-4278-b913-1dc037c278df","originalAuthorName":"常立忠"},{"authorName":"杨海森","id":"dec1db2e-0a43-48e0-8788-e29dd2f37703","originalAuthorName":"杨海森"},{"authorName":"李正邦","id":"544de0be-ea7f-475d-96eb-94502323c877","originalAuthorName":"李正邦"}],"doi":"","fpage":"42","id":"6819e01c-b166-479d-917a-fc131dd21610","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"ca626cfa-9aee-4aa6-9a55-bddb6170dca4","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"0d55cdee-0de6-457a-9605-99c3bc626bf6","keyword":"奥氏体","originalKeyword":"奥氏体"},{"id":"5481b665-5d2b-4ba4-a3e4-1c30b6bfd6d9","keyword":"热力学模型","originalKeyword":"热力学模型"},{"id":"067b766a-24a0-4fe9-b74d-983f8e31be39","keyword":"V(CN)","originalKeyword":"V(CN)"},{"id":"3d660731-b00d-444d-a5bf-4b01aa060803","keyword":"析出","originalKeyword":"析出"}],"language":"zh","publisherId":"gtft201002009","title":"Fe-C-N-Al-Ti-V系在奥氏体中析出的热力学计算","volume":"31","year":"2010"},{"abstractinfo":"采用应力松弛法研究了600-1100℃温度、30%-50%变形量条件下,Ti添加量为0.15%的高Ti钢中Ti的应变诱导析出规律.结果表明,Ti在600-1100℃温度范围内有明显的应变诱导析出过程.这种过程不只存在于单相奥氏体区,也存在于铁素体、奥氏体两相区以及单相铁素体区.温度越低,析出相的尺寸越小.在1000℃以上析出相的尺寸较大,而在900℃以下析出相的尺寸在几纳米至几十纳米.当温度降低到700℃以下时,析出相的尺寸约为3nm.在800-1100℃温度范围内析出的开始时间约为2s,但开始只是少数部位的少量析出.析出是一个持续的过程,样品不同部位的析出开始时间略有不同,10s以后TiC大量均匀析出.析出结束的时间在300-700 s范围内.析出时间与温度(PTT)曲线不符合“C”型特征.在30%、40%、50%三种变形量情况下,40%变形量的变形抗力与30%的相当,回复速度相当,析出开始时间相同,但是TiC的析出速度比30%时快,弛豫后残余应力最大,析出强化效果最明显.继续增加变形量到50%时变形抗力明显增大,回复速度也随之增大,但是析出开始时间由2s推迟到2.7s.弛豫后残余应力反而降低.","authors":[{"authorName":"蔡宁","id":"14b9f542-0df4-4ca7-bf5d-b6c97fd9a313","originalAuthorName":"蔡宁"},{"authorName":"鞠新华","id":"566aaeee-2610-4647-8fea-822232cbc10a","originalAuthorName":"鞠新华"},{"authorName":"孟振生","id":"218a9313-21c3-4882-bce4-490d4860c61e","originalAuthorName":"孟振生"},{"authorName":"贾惠平","id":"226cd667-b1bf-4efb-af43-b68ad97f4ccc","originalAuthorName":"贾惠平"},{"authorName":"郝京丽","id":"9fec1216-88fc-4146-a396-a87bc6d736a7","originalAuthorName":"郝京丽"}],"doi":"","fpage":"659","id":"432622f7-b745-4aa9-a23c-4d1f754aa507","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"51ad84b6-525c-45d5-a64b-24422294d1bd","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"29b11a0f-73bc-4476-8308-191846fad386","keyword":"应变诱导析出","originalKeyword":"应变诱导析出"},{"id":"3617fd55-3385-4390-9a0e-adb630295fc7","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"ababa301-9be6-4baa-933c-f1c48e68ff32","keyword":"高Ti钢","originalKeyword":"高Ti钢"}],"language":"zh","publisherId":"clyjxb201306015","title":"高Ti钢中Ti(N,C)的应变诱导析出行为","volume":"27","year":"2013"},{"abstractinfo":"为提高汽车尾气排放系统中高温端排气歧管等所用铁素体不锈钢的综合性能,采用真空熔炼制备Ti,Nb和W复合强化的超纯铁素体不锈钢(不含Ni),并利用硬度和力学性能测试、场发射扫描电子显微镜和透射电子显微镜分析研究固溶态材料在550,600℃和700℃的时效硬化规律、拉伸性能以及时效析出行为.600℃时效40h之后材料力学性能达到最佳值,在晶粒内部和晶界区域弥散分布着两种形态的纳米析出相,一种是呈不规则颗粒状的(Ti,Nb)C,另一种是呈长条状的Laves相Fe2(Nb,W);这两种析出相与铁素体基体均存在固定的晶体学取向关系,即[011]Fe∥[011](Ti,Nb)c和(0(-1)1)Fe∥(200)(Ti,Nb)C(晶面偏差约3°)以及[011]Fe∥[0001]Fe2(Nb,w)和(200)Fe∥(01(-1)0)Fe2(Nb,w)(晶面偏差4°~5°).随时效温度提高,析出相的尺寸增大,且析出相由(Ti,Nb)C逐渐转变为Fe2 (Nb,W).","authors":[{"authorName":"乔瑞芳","id":"ce7bbac7-3dbf-4419-8d97-4c1204691f5c","originalAuthorName":"乔瑞芳"},{"authorName":"毕洪运","id":"6749cd5d-d287-4433-8c62-59c29ffb175e","originalAuthorName":"毕洪运"},{"authorName":"陈玉喜","id":"63f539d7-6a51-4c50-8fc8-9a370e4332a1","originalAuthorName":"陈玉喜"}],"doi":"10.11868/j.issn.1001-4381.2016.05.004","fpage":"22","id":"6a09b0be-0d1a-4316-aa57-ecc9be37d9f3","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0fd54ee1-45a7-4894-87c6-9d2f4b5c1b48","keyword":"铁素体不锈钢","originalKeyword":"铁素体不锈钢"},{"id":"d657fe7b-91f9-485c-94aa-78ec3937dc9c","keyword":"时效","originalKeyword":"时效"},{"id":"3b4dab2b-410c-4e42-ac76-5bb9a99312ff","keyword":"析出相","originalKeyword":"析出相"},{"id":"0631d7ef-b686-40d3-9b7a-42f5b1f3c9e4","keyword":"(Ti,Nb)C","originalKeyword":"(Ti,Nb)C"},{"id":"b1cb3f78-aa05-4818-95b1-d90370996420","keyword":"Fe2 (Nb,W)","originalKeyword":"Fe2 (Nb,W)"}],"language":"zh","publisherId":"clgc201605004","title":"Ti,Nb和W复合强化超纯铁索体不锈钢的高温析出行为","volume":"44","year":"2016"},{"abstractinfo":"通过微合金化与控轧控冷技术的有机结合,在Nb-Ti微合金化X100管线钢中形成了大量纳米尺寸的析出粒子,对其形貌进行了观测分析,对组织中的析出粒子尺寸分布及其析出强化作用进行了定量分析,通过动力学计算分析了Nb(C,N)在奥氏体中的析出规律.结果表明:高级别管线钢中的析出相主要有两种类型,Nb(C,N)析出(1 ~30 nm)和(Ti,Nb)(C,N)复合析出(50 ~300nm),均为面心立方结构;X100管线钢析出强化贡献值约为70 MPa;对Nb-Ti微合金化管线钢中Nb(C,N)析出的动力学计算表明,在热连轧生产线生产高级别管线钢时,热轧过程中碳氮化物析出不到10%,90%均在随后的冷却过程中析出,在中厚板生产线生产级高级别管线钢时,热轧过程中碳氮化物析出近70%,其余30%主要在随后的冷却过程中析出.","authors":[{"authorName":"张鹤松","id":"a80fa657-45f0-4add-8c0e-7a7eeeba23f3","originalAuthorName":"张鹤松"},{"authorName":"康永林","id":"32b9b66b-5637-446a-8d72-0921ef371d2c","originalAuthorName":"康永林"},{"authorName":"唐兴昌","id":"6e9b97f3-eaf1-4091-9218-6916daef1cb8","originalAuthorName":"唐兴昌"}],"doi":"","fpage":"138","id":"7b3ac6b3-5fc5-4a8e-87a4-3bb0fe50c72e","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"b4385984-04ab-4cf9-8f13-255dfa28b975","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"416f42ea-f5ad-474a-868e-1a7bc90c2597","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"55f4f039-dfe8-43ed-a71b-5cce0e82af1e","keyword":"纳米析出","originalKeyword":"纳米析出"},{"id":"6222b157-3e38-4eea-af13-8f72ae0bc1e1","keyword":"强化机制","originalKeyword":"强化机制"},{"id":"7f1cde17-b3c0-4088-9b32-d7c552f6f949","keyword":"析出规律","originalKeyword":"析出规律"}],"language":"zh","publisherId":"jsrclxb201511024","title":"Nb-Ti微合金化X100管线钢中的纳米析出规律","volume":"36","year":"2015"},{"abstractinfo":"用SEM和TEM等研究了Nb-V-Ti微合金钢的组织,特别是复合析出相的形貌和形成机制,并探讨了其对力学性能的影响.结果表明:试验用钢的组织为典型的铁素体-珠光体组织,TiN形成于连铸坯冷却过程的较高温度区间,形态经历了由球形向方形的长大过程;复合析出相包含Nb、V、Ti,NbC和VC依附于先析出的TiN表面以共格关系形核长大的,整体呈铆钉形或其它不规则形状,尺寸为50~70 nm.","authors":[{"authorName":"冯锐","id":"2ca89ad8-b174-4efa-b200-63950aeac8c2","originalAuthorName":"冯锐"},{"authorName":"李胜利","id":"9b4d030c-dedb-4ec0-b9b5-d8d588e5a64f","originalAuthorName":"李胜利"},{"authorName":"李贞顺","id":"8294602b-1927-4566-abcb-8c37814e96f4","originalAuthorName":"李贞顺"},{"authorName":"敖青","id":"8a441c0c-d084-4ccc-a361-4649559695f2","originalAuthorName":"敖青"}],"doi":"","fpage":"37","id":"839f3ecf-2596-4a98-92b3-f144a422bfc8","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e9646ecc-b154-47e4-95a4-97201e189e7c","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"90fd4e4c-7cf1-499d-940b-b9b1d16a30f4","keyword":"复合析出相","originalKeyword":"复合析出相"},{"id":"30660483-2c26-4f53-bade-e2b43ee88d14","keyword":"高分辨电子显微像","originalKeyword":"高分辨电子显微像"},{"id":"2aa7710a-f63a-4b4d-b4f7-d8fcc13e4654","keyword":"共格","originalKeyword":"共格"}],"language":"zh","publisherId":"jsrclxb201302009","title":"Nb-V-Ti微合金钢复合析出相的特征","volume":"34","year":"2013"},{"abstractinfo":"采用非平衡反应磁控溅射的方法在Si(100)基片上沉积Ti(C,N)复合膜和不同调制周期、调制比的TiN/Ti(C,N)纳米多层薄膜.薄膜的微观结构和力学性能采用X射线衍射仪(XRD)、显微硬度计进行表征.结果表明,Ti(C,N)复合膜的微观结构和力学性能与掺入C的含量有关;TiN/Ti(C,N)纳米多层膜的微观结构和力学性能与调制周期和调制比有关,其显微硬度在一定的调制周期和调制比范围内出现了超硬现象.Ti(C,N)、TiN/Ti(C,N)均为δ-NaCl面心立方结构;Ti(C,N)复合膜显微硬度提高是因为固溶强化,TiN/Ti(C,N)纳米多层膜硬度的提高主要是共格外延生长在界面处产生的交变应力场.","authors":[{"authorName":"汪蕾","id":"001a2d91-6c3c-4235-84c9-742679222d0f","originalAuthorName":"汪蕾"},{"authorName":"董师润","id":"7f24942e-fcd7-48fd-b404-efc760ba01f8","originalAuthorName":"董师润"},{"authorName":"尤建飞","id":"cf765397-2ab2-41ca-81ac-41f8f6002425","originalAuthorName":"尤建飞"},{"authorName":"喻利花","id":"44fe2357-4457-4d2e-8d74-eb3431e17947","originalAuthorName":"喻利花"},{"authorName":"李学梅","id":"3c84c392-efed-4a1a-b1a7-52a239b2e4b4","originalAuthorName":"李学梅"},{"authorName":"许俊华","id":"e867b999-b59a-47eb-ac7e-47ddcc7dc94c","originalAuthorName":"许俊华"}],"doi":"","fpage":"113","id":"6c8374ec-afcd-4276-83d3-7fec3ce3560f","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"4abc5175-6fc4-4c43-a99e-8c7266fdcb4e","keyword":"Ti(C,N)复合膜","originalKeyword":"Ti(C,N)复合膜"},{"id":"8943dbf8-0ca8-4c0d-9412-a3c9a47a604d","keyword":"TiN/Ti(C,N)纳米多层膜","originalKeyword":"TiN/Ti(C,N)纳米多层膜"},{"id":"e8dca165-e621-4697-a66f-cd937a5c873b","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"71f317c2-a8b8-40ff-a1e5-96eb31d8e99b","keyword":"组织","originalKeyword":"组织"},{"id":"0b8faa84-1eab-4a0b-928f-d678470991c0","keyword":"超硬效应","originalKeyword":"超硬效应"}],"language":"zh","publisherId":"jsrclxb201002024","title":"Ti(C,N)复合膜和TiN/Ti(C,N)多层膜组织和显微硬度","volume":"31","year":"2010"},{"abstractinfo":"运用固体与分子经验电子理论(EET理论)计算了(Ti,Mo,W,Ta,V,Nb)(C,N)多元陶瓷相的价电子结构.结果表明,价电子结构参数(nA)随碳化物添加量的增加而增加.不同碳化物对价电子结构参数的影响不同,其中VC的影响最为显著.价电子结构参数(nA)可以用来评价金属陶瓷的力学性能,提出了相关的判据关系式.","authors":[{"authorName":"许育东","id":"e10e7aee-b38e-4fd3-9ec5-a34c03cfebdb","originalAuthorName":"许育东"},{"authorName":"刘宁","id":"edf6a80e-6101-4ec0-81de-79c3e0c52914","originalAuthorName":"刘宁"},{"authorName":"石敏","id":"38bdae0e-6add-40e5-a211-88df22239668","originalAuthorName":"石敏"},{"authorName":"陈名海","id":"43cb4ce8-b88a-44ce-a541-e36234364c35","originalAuthorName":"陈名海"}],"doi":"10.3969/j.issn.1001-1625.2005.02.002","fpage":"8","id":"beff77c0-eb83-4a66-99f1-5b24f7729ea6","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"03ab465b-e845-4697-9b1b-c7540cb8744c","keyword":"价电子结构","originalKeyword":"价电子结构"},{"id":"8e00ebae-1cdd-4d62-8b39-95421af4e84a","keyword":"多元陶瓷相","originalKeyword":"多元陶瓷相"},{"id":"6506d919-345a-4c09-826c-3b6107c186f9","keyword":"碳化物","originalKeyword":"碳化物"},{"id":"0ca67bc6-0830-48f0-b267-cd91379ac516","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gsytb200502002","title":"(Ti,Mo,W,Ta,V,Nb)(C,N)多元陶瓷相的价电子结构","volume":"24","year":"2005"}],"totalpage":7662,"totalrecord":76613}