{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"橡胶材料本构模型大致可以分为两大类:基于应变能函数的唯象模型和基于分子链网络的统计模型.概述了分子链网络本构模型中的几个典型代表及其优缺点,以及近年来发展的几种修正模型.","authors":[{"authorName":"谭江华","id":"67e641ba-8d7d-4fd2-a3af-8cc02c139d51","originalAuthorName":"谭江华"},{"authorName":"罗文波","id":"41a34c15-e6bd-413f-9486-25701c537d4e","originalAuthorName":"罗文波"}],"doi":"","fpage":"31","id":"189aa1a1-8ce4-4b6f-9aec-92601fba48b7","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ea100555-04f9-4d90-9f8b-b3f9f67bfb8e","keyword":"橡胶弹性","originalKeyword":"橡胶弹性"},{"id":"63abc3f7-e798-4ee9-8a33-c6606312146f","keyword":"分子链网络","originalKeyword":"分子链网络"},{"id":"2e92b8f1-e8e5-4c80-b10f-e9e688d6c18b","keyword":"非高斯链","originalKeyword":"非高斯链"},{"id":"a9dfb9dc-8152-4990-95f4-95d3894240e0","keyword":"本构模型","originalKeyword":"本构模型"}],"language":"zh","publisherId":"cldb200807008","title":"橡胶材料分子链网络本构模型的研究进展","volume":"22","year":"2008"},{"abstractinfo":"时间-温度-应力等效原理是时间-温度等效原理的延伸,可用于材料力学行为的加速表征,通过短期实验来预测材料的长期力学性能.针对PMMA试件在不同温度、不同应力水平条件下的蠕变实验,分析PMMA蠕变行为的非线性特性.本文应用时间-温度-应力等效原理,得到相应的温度移位因子、应力移位因子和温度-应力联合移位因子,构建了参考温度和参考应力水平条件下的蠕变柔量主曲线.理论和数值计算表明,较高温度和应力水平下的PMMA短期蠕变实验可用于预测其在较低温度和应力水平下的长期蠕变行为.","authors":[{"authorName":"王初红","id":"19f453a4-99ae-47f4-8941-244b274b4c89","originalAuthorName":"王初红"},{"authorName":"罗文波","id":"c6047037-b305-4e57-ab47-7d840fd33831","originalAuthorName":"罗文波"},{"authorName":"赵荣国","id":"fc108c5f-7364-4957-b74a-dcc8cd571ded","originalAuthorName":"赵荣国"},{"authorName":"唐欣","id":"aa21f6cb-330b-477f-a82b-191f3d5b7f24","originalAuthorName":"唐欣"}],"doi":"","fpage":"218","id":"31c7f49d-42c4-4969-9dba-a1cfaccff5c6","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1f586dc8-0b26-4381-ac8b-4e3c2349f243","keyword":"蠕变","originalKeyword":"蠕变"},{"id":"a37bf632-664b-4de5-bea8-816a745b5bd2","keyword":"时间-温度-应力等效原理","originalKeyword":"时间-温度-应力等效原理"},{"id":"bad7c643-4b0f-4815-8b35-524b2a150ccb","keyword":"移位因子","originalKeyword":"移位因子"},{"id":"67fa2570-8407-4102-a2ac-8815e7c484b3","keyword":"非线性粘弹性","originalKeyword":"非线性粘弹性"},{"id":"ebb600fe-3504-4605-91ab-22103fd8794b","keyword":"PMMA","originalKeyword":"PMMA"}],"language":"zh","publisherId":"gfzclkxygc200702054","title":"非线性粘弹性高分子材料长期蠕变行为的加速测试技术","volume":"23","year":"2007"},{"abstractinfo":"将小变形与线弹性范围的泊松比定义拓展到大变形超弹性范围,给出了合理描述泊松比和体积应变的应变度量.测量了单轴拉伸过程中不同炭黑含量的填充橡胶的泊松比和体积应变,分析了它们随变形的变化规律.结果表明,在大变形情况下,只有H encky应变才能合理描述材料的体积不可压缩特性,材料的泊松比和体积应变具有变形相关性,推导得到了相关的表达式.当Hencky应变小于某一临界值时,炭黑填充橡胶的泊松比约为常数0.5,可视为体积不可压缩,当Hencky应变超过该临界值时,泊松比随应变的增大而线性下降,且炭黑含量愈大,下降愈快,相应地,材料体积应变随变形的增大而增大,大变形时体积变化不客忽视.此外,临界应变与炭黑含量相关,炭黑含量愈大,临界应变愈小.","authors":[{"authorName":"刘秀","id":"74d996fa-0702-4900-a6d9-09dc0d130c4b","originalAuthorName":"刘秀"},{"authorName":"李明","id":"7bbd174a-20fe-4774-b1e8-dfb1672575fa","originalAuthorName":"李明"},{"authorName":"胡小玲","id":"eba0366d-3fbf-48e8-a3af-7d312ca57861","originalAuthorName":"胡小玲"},{"authorName":"罗文波","id":"c4875bb7-1052-473f-a2fe-698ea6d2658b","originalAuthorName":"罗文波"}],"doi":"","fpage":"96","id":"3370c32d-3afa-41c2-a89b-e8d5c310c816","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e03a92e3-276b-4abe-8476-5aa1fd942ce3","keyword":"炭黑填充橡胶","originalKeyword":"炭黑填充橡胶"},{"id":"48a2f420-167e-4217-a606-8d04f3536661","keyword":"泊松比","originalKeyword":"泊松比"},{"id":"466247bd-5482-4c3e-b272-d1a703a1ef7d","keyword":"体积压缩性能","originalKeyword":"体积压缩性能"},{"id":"bf0b31cb-9f80-4dfb-a3f2-4c808795d66b","keyword":"体积应变","originalKeyword":"体积应变"},{"id":"4639ce9d-86fe-4510-aa37-15666dda6a84","keyword":"临界应变","originalKeyword":"临界应变"}],"language":"zh","publisherId":"gfzclkxygc201507018","title":"炭黑填充橡胶材料的泊松比与体积压缩特性","volume":"31","year":"2015"},{"abstractinfo":"对含孔洞聚合物材料平面应力拉伸失效过程中由于不可逆变形引起的热量生成进行了实验研究,利用红外测温技术观测、记录和初步分析了孔洞局域温度场的形成和演变规律.研究表明,聚合物材料的损伤与断裂过程是热力耦合的,在我们的具体实验中,材料宏观破坏时的生成热约为外力功的44%,可见,它对材料失效的影响是不可忽略的.同时,结合形变的微观和细观物理机制,对实验中观测到的变温规律作了初步的定性解释.","authors":[{"authorName":"罗文波","id":"9fa31338-a72a-464b-83b4-5f10efa172a8","originalAuthorName":"罗文波"},{"authorName":"喻青松","id":"2dbfe114-75cd-4409-9469-6e4e8a34f3f2","originalAuthorName":"喻青松"}],"doi":"","fpage":"138","id":"3d6329db-a1a3-49dd-bc93-60f20b4ed2fc","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c43fb45c-c956-4a8e-bf3d-cb2ef6051c9a","keyword":"温度场","originalKeyword":"温度场"},{"id":"427b16be-943f-4181-902e-9d36d13adac1","keyword":"热量生成","originalKeyword":"热量生成"},{"id":"3da266e9-a62e-40d5-9f0b-6aaa754d5d2a","keyword":"热力耦合","originalKeyword":"热力耦合"},{"id":"28ef25bd-f19e-4501-9209-0278b569941d","keyword":"聚合物断裂","originalKeyword":"聚合物断裂"}],"language":"zh","publisherId":"gfzclkxygc199906041","title":"含孔洞聚合物材料破坏过程中的热量生成","volume":"15","year":"1999"},{"abstractinfo":"银纹化是脆性高聚物的一种典型的非线性变形方式.银纹在其引发、生长和断裂过程中消耗大量能量,对高聚物的增韧设计十分重要.考虑银纹细观结构特征的银纹生长和断裂规律是研究银纹增韧机制的核心内容.根据国内外近期的若干研究进展,基于对承载高聚物中的银纹断裂及其与裂纹扩展的相互作用等问题的分析,从理论上探讨将材料断裂韧性与其微观控制参数(如分子量,缠结密度等)联系起来,寻求对脆性高聚物进行微观增韧设计的途径和方法.","authors":[{"authorName":"罗文波","id":"82fc16cd-c891-441e-a13e-480a471b75cc","originalAuthorName":"罗文波"},{"authorName":"杨挺青","id":"1723d0bf-e420-4763-8d60-10e697879da4","originalAuthorName":"杨挺青"}],"doi":"10.3969/j.issn.1673-2812.2002.03.030","fpage":"422","id":"5cd4a536-cddf-40e2-9622-a683c47ff4d8","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"2e321a53-9851-4657-9a60-da0464fd530d","keyword":"高聚物","originalKeyword":"高聚物"},{"id":"dc0c9ee5-0ba1-4810-9881-371493df2260","keyword":"银纹化","originalKeyword":"银纹化"},{"id":"6b64ec52-6375-4cb7-8a75-c87a81adf8bc","keyword":"增韧","originalKeyword":"增韧"}],"language":"zh","publisherId":"clkxygc200203030","title":"脆性高聚物的银纹化增韧设计","volume":"20","year":"2002"},{"abstractinfo":"研究炭黑填充硫化橡胶的动态粘弹性,采用Gabo Eplexor 500N对材料进行不同频率时的温度扫描测试,得到材料玻璃化转变温度Tg随频率的变化规律。在Tg~Tg+50℃范围内进行不同温度的频率扫描测试,得到材料存储模量、损耗模量和损耗因子。采用分数阶微分Kelvin模型对动态粘弹特性进行分析,确定了模型参数。结果表明,分数阶微分Kelvin模型可以较好地描述材料在不同温度和较宽频率范围内的动态粘弹性力学行为。当温度高于Tg时,随着温度的升高,材料从Tg附近的粘弹态向高温时的橡胶态转变,模型中的微分阶数相应地逐渐减小。","authors":[{"authorName":"周雄","id":"c43c9010-f11e-4d8e-a2aa-2bb75005f009","originalAuthorName":"周雄"},{"authorName":"胡小玲","id":"bb2f380d-c317-48ec-ad73-90a2bd836c5a","originalAuthorName":"胡小玲"},{"authorName":"肖世武","id":"46f833b2-bdb8-4c6f-8963-f7727d7cd623","originalAuthorName":"肖世武"},{"authorName":"罗文波","id":"7180c7bc-38e3-476e-9323-3751a4511756","originalAuthorName":"罗文波"}],"doi":"","fpage":"187","id":"7d0dc8e6-f108-4460-b2b7-91976ce2ace3","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"11b177f0-4eea-4ae6-a651-ec3139107255","keyword":"分数阶微分模型","originalKeyword":"分数阶微分模型"},{"id":"f841b797-e5c5-4acd-b4ce-b748068737a5","keyword":"存储模量","originalKeyword":"存储模量"},{"id":"4904e616-e721-4f87-a7c7-fd201aa22e6b","keyword":"损耗模量","originalKeyword":"损耗模量"},{"id":"58a4333c-5989-466c-a95d-0eaafd24f674","keyword":"硫化橡胶","originalKeyword":"硫化橡胶"}],"language":"zh","publisherId":"gfzclkxygc201204048","title":"硫化橡胶动态力学性能的分数阶微分Kelvin模型","volume":"28","year":"2012"},{"abstractinfo":"通过浸水实验、缺口冲击断裂实验和动态流变测试,考察了PTFE含量对PTFE/PA6和PTFE/PA66共混物的吸水率、冲击断裂强度及熔体黏度的影响以及熔体黏度随温度和频率的变化规律.结果表明,PTFE/PA6和PTFE/PA66共混物的吸水率均随着PTFE含量的增加而减小,即PTFE的加入抑制了共混物的吸水性.两种共混物的冲击强度比纯PA明显降低,但是吸收水对两种共混物冲击强度的影响不显著.随着PTFE含量的增加,共混物熔体的黏度先减小后增加,说明适量的PTFE可以改善共混物的成型加工特性.共混物熔体的黏度随加载频率的增大而降低,符合假塑性流体流动规律.有趣的是,对于PTFE/PA6共混物的黏度随着温度的升高而减小,而PTFE/PA66共混物黏度随着温度升高近似成指数规律增大.","authors":[{"authorName":"肖华明","id":"ce762f37-2bf0-4f53-965e-999cf01a6a59","originalAuthorName":"肖华明"},{"authorName":"罗文波","id":"95da5604-67a1-4231-b5fe-497213a489ad","originalAuthorName":"罗文波"},{"authorName":"吴国忠","id":"bedbc5a5-c51e-49aa-a17a-c1f97ac8ea21","originalAuthorName":"吴国忠"},{"authorName":"赵荣国","id":"70683093-9000-4d94-851f-b01b722d6744","originalAuthorName":"赵荣国"}],"doi":"","fpage":"179","id":"7e286aeb-d4ce-4b0a-82ce-1969c034e947","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"871660ae-4fd3-446c-ac99-ff596c0ad1d0","keyword":"PTFE/PA6共混物","originalKeyword":"PTFE/PA6共混物"},{"id":"9380729c-d332-4d65-892f-a76673acf001","keyword":"PTFE/PA66共混物","originalKeyword":"PTFE/PA66共混物"},{"id":"d7555fc3-62d1-4c4d-a9f5-ec371b592326","keyword":"吸水率","originalKeyword":"吸水率"},{"id":"30aa0217-f24f-4946-912f-64fa20b2fa6b","keyword":"冲击强度","originalKeyword":"冲击强度"},{"id":"29bb7b4d-5dc3-427b-9ed1-226f99904c18","keyword":"复黏度","originalKeyword":"复黏度"}],"language":"zh","publisherId":"gfzclkxygc200702044","title":"PTFE/PA6和PTFE/PA66共混物的吸水性及流变行为","volume":"23","year":"2007"},{"abstractinfo":"研究了高密度聚乙烯(HDPE)和聚丙烯(PP)变形过程的应变率敏感性和应力松弛行为,实验发现应力松弛行为与应变历史有关.加载过程中的应力松弛表现为应力随时间的增长而减小;卸载过程中应力松弛则表现出不同的现象:在卸载初始阶段,应力逐渐减小并趋于其平衡值,当卸载程度较大,其应力松弛表现为应力随时间逐渐增大并趋向其平衡值.","authors":[{"authorName":"罗文波","id":"67d7e107-7743-4232-8308-edfc414e95dd","originalAuthorName":"罗文波"},{"authorName":"杨挺青","id":"90da0e36-98df-4a68-8f32-1935d2306226","originalAuthorName":"杨挺青"}],"doi":"","fpage":"97","id":"d8f19f9b-e131-4d90-bd94-faf1672c3dd7","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c5113a6b-74ec-473e-86bb-b4de0441655d","keyword":"高聚物","originalKeyword":"高聚物"},{"id":"ecec2a73-cebe-4ba1-adbe-c466633933de","keyword":"应变率","originalKeyword":"应变率"},{"id":"166d453a-eb80-451c-9ef8-a0a18db9c32c","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"1f8ab190-5549-4a7f-920c-00628f961b57","keyword":"非线性","originalKeyword":"非线性"},{"id":"7e8a17e7-4611-41ce-ba24-53137edb136a","keyword":"粘弹性","originalKeyword":"粘弹性"}],"language":"zh","publisherId":"gfzclkxygc200202023","title":"固态高聚物的应力松弛行为","volume":"18","year":"2002"},{"abstractinfo":"材料力学性能的时间相关特性对结构设计非常重要,尤其是长期力学性能的准确信息是结构强度和寿命分析的基础.结合近期研究进展,对影响高聚物时间相关力学性能和长期力学加速表征的主要因素进行了分析,对高聚物等流变材料长期力学性能的加速表征方法和技术以及涉及的基础问题进行了简要评述.","authors":[{"authorName":"罗文波","id":"1e4193b5-0ef9-4365-921b-c07a728dac6b","originalAuthorName":"罗文波"},{"authorName":"唐欣","id":"a375a897-6e35-44bb-b93f-6f2d08befb40","originalAuthorName":"唐欣"},{"authorName":"谭江华","id":"d8bb84b2-ed68-44ed-949f-773a41ec06b1","originalAuthorName":"谭江华"},{"authorName":"赵荣国","id":"ccd25fb2-35fd-4462-a853-81cace2022e4","originalAuthorName":"赵荣国"}],"doi":"","fpage":"8","id":"e62227f9-3aad-4b24-a092-84297daee1eb","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a7de9192-232b-41b8-9b82-04d7de0a8d46","keyword":"加速表征","originalKeyword":"加速表征"},{"id":"5719e978-f8b1-475c-8653-70943dd3cbec","keyword":"黏弹性","originalKeyword":"黏弹性"},{"id":"e89fe53b-1acc-466e-a256-52ad851ba243","keyword":"热流变材料","originalKeyword":"热流变材料"},{"id":"e476e936-cd85-4547-a347-dccd012b4130","keyword":"长期力学性能","originalKeyword":"长期力学性能"}],"language":"zh","publisherId":"cldb200707003","title":"流变材料长期力学性能加速表征的若干进展","volume":"21","year":"2007"},{"abstractinfo":"对碳纤维蜂窝夹层结构的动力学问题进行了深入分析.将碳纤维网格表面等效为正交异性薄板,铝蜂窝夹芯按蜂窝实际受力情况和尺寸大小等效为三维正交异性体,并考虑到为了防止失稳破坏而进行的蜂窝局部加密、碳纤维表板加厚及结构局部加强.所建模型经复杂结构有限元方法分析,结果和试验相吻合,表明等效模型是合理的,方法是正确的.","authors":[{"authorName":"王萍萍","id":"18f8ec62-e42e-442f-ac7c-5dbce06a3f72","originalAuthorName":"王萍萍"},{"authorName":"罗文波","id":"ce6945b8-439e-46db-b7e1-575b7e233bc2","originalAuthorName":"罗文波"},{"authorName":"邹经湘","id":"513d2077-0cef-437f-8a8a-46d5360d9aad","originalAuthorName":"邹经湘"},{"authorName":"孔宪仁","id":"c0ce69f3-793e-4e1c-82cc-a37a98051545","originalAuthorName":"孔宪仁"}],"doi":"10.3321/j.issn:1000-3851.2002.06.026","fpage":"134","id":"80505032-c6dc-4c09-9518-95af88858c83","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f3e36aa7-ff6d-426a-bc9d-8524a9721837","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"4be02431-9bf0-4186-a61c-bda92d24b987","keyword":"蜂窝夹层","originalKeyword":"蜂窝夹层"},{"id":"7c03637e-0669-4191-83a7-3be14fdad7b5","keyword":"有限元","originalKeyword":"有限元"},{"id":"46353abf-bb76-4e4d-bfe5-60fcbfdc775e","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"fhclxb200206026","title":"碳纤维蜂窝夹层结构动特性分析","volume":"19","year":"2002"}],"totalpage":301,"totalrecord":3006}