{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过溶胶-凝胶法制备了Pt/TiO2纳米薄膜,并在气相连续流动装置中,对甲醇的光催化脱氢反应进行了研究.将Pt/TiO2薄膜催化剂与TiO2薄膜催化剂的光催化活性进行了比较,考察了产氢量甲醇浓度、光照时间的关系,以及空速、反应温度对甲醇转化率的影响.结果表明,经过还原后分散于TiO2薄膜表面的Pt是以Pt2+及Pt0价态存在的.Pt/TiO2纳米薄膜是未负载Pt纳米薄膜光催化活性的28倍.增加甲醇蒸汽的浓度会使产氢速率增大;当甲醇浓度在29%时,产氢速率达到最大,为4.68mmol/h.醇的转化率随着空速的增加而减小.该反应在一定的浓度范围内是一级反应,其反应的活化能为26.19kJ/mol.","authors":[{"authorName":"崔文权","id":"e58127b1-1759-4702-b41f-7a1b6c018b9f","originalAuthorName":"崔文权"},{"authorName":"刘利","id":"17209738-cc08-48be-8a2e-750fc5587619","originalAuthorName":"刘利"},{"authorName":"齐跃丽","id":"682e9a5b-4fdf-4f1b-9fad-3152cc494ab6","originalAuthorName":"齐跃丽"},{"authorName":"梁英华","id":"4a1ed306-2914-41c9-8621-e39fb9232cee","originalAuthorName":"梁英华"},{"authorName":"邱发礼","id":"03350ac6-e47f-4381-a9d4-94a6e0adce61","originalAuthorName":"邱发礼"}],"doi":"","fpage":"1772","id":"5bf7871b-4972-4598-92fa-1878ee20a0d6","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5c353928-26f0-4c9b-8347-1220943e6d12","keyword":"Pt/TiO2纳米薄膜","originalKeyword":"Pt/TiO2纳米薄膜"},{"id":"1e62a01f-6fb6-4e40-9efa-0b546c5b1b6b","keyword":"光催化","originalKeyword":"光催化"},{"id":"21d1b68a-d9f7-4cf0-b5ef-0fdbf97fb521","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"3d83d92d-9046-4b81-b627-6edd79eb91a9","keyword":"制氢","originalKeyword":"制氢"},{"id":"18de35f9-8559-444c-852d-742df8471afb","keyword":"活化能","originalKeyword":"活化能"}],"language":"zh","publisherId":"gncl201010029","title":"Pt/TiO2纳米薄膜的制备及光催化气相甲醇制氢的研究","volume":"41","year":"2010"},{"abstractinfo":"采用溶胶-凝胶法辅之以离子溅射制备了TiO2/Pt/TiO2纳米多层薄膜TiO2/TiO2薄膜.通过SEM观察表明,TiO2/Pt/TiO2中二氧化钛颗粒的平均尺寸在20~40nm之间,而TiO2/TiO2中颗粒平均尺寸在40~80nm之间.TiO2/Pt/TiO2纳米多层薄膜的总厚度约为160nm.TEM观察及SADP结果证实单质Pt颗粒尺寸在20~40nm之间,二氧化钛为锐钛矿型.与TiO2/TiO2薄膜相比,TiO2/Pt/TiO2的光吸收曲线红移了30nm,与此同时,除本征吸收边(365nm)外,它在可见光波段还出现了一个新的吸收边650nm,对应的带隙为1.91eV,这种现象归因于沉积PtTiO2/Pt/TiO2薄膜中存在金属与基体的界面强相互作用(SMSI).在可见光光降解甲基蓝的实验中,扣除甲基蓝自身的分解,TiO2/Pt/TiO2多层纳米复合薄膜2h后的光降解率为18.1%.","authors":[{"authorName":"张瑜","id":"da761624-3c8d-4de5-a6ac-c877b1813d3b","originalAuthorName":"张瑜"},{"authorName":"梁伟","id":"7b41c6da-1b90-489a-b134-34afed87d351","originalAuthorName":"梁伟"},{"authorName":"云洁","id":"002a5e0a-5e41-4892-89f8-f288244ccdfb","originalAuthorName":"云洁"},{"authorName":"白爱英","id":"61e1b924-ac84-4a4e-96dc-efd64df17003","originalAuthorName":"白爱英"},{"authorName":"薛晋波","id":"44dc2a12-9596-42d1-9621-2a41d4058e13","originalAuthorName":"薛晋波"}],"doi":"","fpage":"508","id":"3e44f608-c7a9-4d54-8386-51161b49a92f","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"959f847a-3d34-48e7-a500-b02c8ba80d6f","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"fee904f4-356e-469f-9947-514762769212","keyword":"二氧化钛薄膜","originalKeyword":"二氧化钛薄膜"},{"id":"cfcf740d-e3c4-4dba-933b-1d404b34bc87","keyword":"铂颗粒","originalKeyword":"铂颗粒"},{"id":"ab0a905d-34d6-428e-93cf-59cf8ef428ed","keyword":"光催化活性","originalKeyword":"光催化活性"}],"language":"zh","publisherId":"gncl200903046","title":"PtTiO2薄膜的结构及可见光光催化活性的影响","volume":"40","year":"2009"},{"abstractinfo":"制备并研究了纳米TiO2Pt掺杂纳米TiO2对蓝藻生长的影响.结果表明,在太阳光照射下,Pt掺杂纳米TiO2能够破坏蓝藻藻囊;与纳米TiO2相比,Pt掺杂纳米TiO2能够更有效地使蓝藻内叶绿素含量、光合速率和呼吸速率以及超氧化物岐化酶(SOD)活性降低,超氧自由基增多;当Pt掺杂量为1%时,掺Pt纳米TiO2对蓝藻的抑制效果最好.","authors":[{"authorName":"尹海川","id":"beb0af9a-2149-41d3-bbd4-ccfa4fa98d56","originalAuthorName":"尹海川"},{"authorName":"柳清菊","id":"8e785b96-10fd-4299-9c1f-0bff917de5d6","originalAuthorName":"柳清菊"},{"authorName":"林强","id":"f0bb0d14-aa2a-4261-bc13-9ccc3741b719","originalAuthorName":"林强"}],"doi":"","fpage":"1934","id":"808ba96d-f7f5-40e2-bb73-80acd7448f10","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"94e3dcca-b45d-438b-b21a-4f7258a5dfec","keyword":"Pt掺杂纳米TiO2","originalKeyword":"Pt掺杂纳米TiO2"},{"id":"2258ef38-0bc2-4441-9feb-c1afee8c57d1","keyword":"蓝藻抑制","originalKeyword":"蓝藻抑制"},{"id":"a9630ed4-6a67-48ef-9706-3050538dc12b","keyword":"SOD","originalKeyword":"SOD"},{"id":"8fac72d4-26ea-4bc1-b7c1-a8500a6ed14b","keyword":"超氧自由基","originalKeyword":"超氧自由基"},{"id":"e6024074-8de7-4f71-96c1-d783d7ad224b","keyword":"叶绿素","originalKeyword":"叶绿素"}],"language":"zh","publisherId":"gncl200512036","title":"纳米TiO2掺杂贵金属Pt抑制蓝藻的生长","volume":"36","year":"2005"},{"abstractinfo":"采用液相沉积法(LPD),在40℃通过向氟钛酸铵水溶液中添加硼酸和结晶诱导剂锐钛矿型TiO2纳米晶,在光纤上沉积出具有光催化活性的TiO2薄膜.并对其进行了XRD测试和SEM测试,探讨了处理温度、沉积时间和次数等对TiO2薄膜的表面与界面及薄膜厚度的影响.结果表明:利用液相沉积法可以在较低的温度下制备TiO2薄膜,并通过热处理可得到均一的TiO2薄膜;随着沉积时间的延长,或者是沉积次数的增加,沉积在光纤上的TiO2的厚度也随之增加,薄膜的透明度和颜色也随之发生变化;由于沉积在光纤表面的TiO2与基质SiO2之间形成Si-O-Ti键,使得基质与沉积在表面的TiO2薄膜间形成了紧密地结合.","authors":[{"authorName":"李顺","id":"d7ef3c8f-1898-4037-a45b-366b677060c1","originalAuthorName":"李顺"},{"authorName":"刘家臣","id":"57dc5ec3-fc1b-4add-b96b-8810e3abbf2a","originalAuthorName":"刘家臣"},{"authorName":"田勃然","id":"4ad7730a-8901-41c1-9be8-f567cd1dab98","originalAuthorName":"田勃然"},{"authorName":"杜海燕","id":"205d8aea-7023-432b-a267-48875b19ecb5","originalAuthorName":"杜海燕"}],"doi":"","fpage":"856","id":"e89c4aae-c26a-4d68-912f-29cee32025c7","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"41b3337e-93a4-426a-b90c-714aa61153f6","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"59f08fa4-9419-409d-8e56-2da9ad8d3988","keyword":"光纤","originalKeyword":"光纤"},{"id":"68c244ef-558a-4ffc-aa17-4234da97e28a","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"dc8ac7e8-af08-4c90-b87e-ce60e164b7b3","keyword":"液相沉积法","originalKeyword":"液相沉积法"}],"language":"zh","publisherId":"xyjsclygc2005z2066","title":"纳米TiO2薄膜在光纤上的沉积","volume":"34","year":"2005"},{"abstractinfo":"选用不同材料做衬底,使用溶胶-凝胶法制备纳米TiO2薄膜,并采用XRD、AFM、UV、SPS对薄膜进行表征.在500℃以上焙烧2h后,即可获得锐钛矿型TiO2薄膜,粒径15nm左右,紫外吸收光谱分析表明,薄膜在220~350nm处有较强的紫外吸收.","authors":[{"authorName":"邹博","id":"a6a7fadc-6d68-4d4f-ba28-c303a6b703c8","originalAuthorName":"邹博"},{"authorName":"吴凤清","id":"8f6645c6-0611-4fcb-97a6-57fc252ebf7c","originalAuthorName":"吴凤清"},{"authorName":"阮圣平","id":"2f5ad64d-7b48-46ce-b12c-1b541356e61e","originalAuthorName":"阮圣平"},{"authorName":"邹乐辉","id":"4541ec05-1d4f-4065-a6ea-a5bca390de01","originalAuthorName":"邹乐辉"},{"authorName":"王竹仪","id":"412f123e-10c9-4645-87f9-4abf0bc03b2b","originalAuthorName":"王竹仪"},{"authorName":"刘彩霞","id":"67cd5584-026e-41a1-873b-3633a828d94e","originalAuthorName":"刘彩霞"},{"authorName":"甘勇","id":"03c4d829-1e40-4207-bafa-77b023dcdc1b","originalAuthorName":"甘勇"},{"authorName":"徐宝琨","id":"3248f476-a0eb-4358-bdc6-30a6244cf5ae","originalAuthorName":"徐宝琨"}],"doi":"","fpage":"2902","id":"d29b591f-cddb-41de-9e8b-5100cb0d7616","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f39e5b09-ba97-41b3-9d86-bdd4cbd33d8d","keyword":"TiO2薄膜","originalKeyword":"TiO2薄膜"},{"id":"24c95e96-bcb5-42de-9b23-e5524d75d419","keyword":"紫外吸收","originalKeyword":"紫外吸收"},{"id":"7b098b70-c182-4c54-99bd-f210195341fb","keyword":"光伏效应","originalKeyword":"光伏效应"}],"language":"zh","publisherId":"gncl2004z1812","title":"纳米TiO2薄膜紫外吸收特性的研究","volume":"35","year":"2004"},{"abstractinfo":"采用液相沉积法,在90℃下制备了纳米锐钛矿型TiO2薄膜.采用XRD、UV透射光谱、薄膜表面接触角的测量、厚度的测量及亚甲基蓝降解等手段研究了TiO2薄膜的性能.结果表明:所制备的TiO2薄膜具有较好的超亲水特性及光催化活性,在可见光范围内具有较好的透明性,其平均透光率在80%以上.","authors":[{"authorName":"王庆辉","id":"0b200329-073e-4ca6-ba71-d9988dae85bb","originalAuthorName":"王庆辉"},{"authorName":"靳映霞","id":"db590737-8dc8-4897-84de-a8a3f9463070","originalAuthorName":"靳映霞"},{"authorName":"朱忠其","id":"c9714f1f-5cf8-4079-af21-11969827ace3","originalAuthorName":"朱忠其"},{"authorName":"张瑾","id":"1a5b3f22-97d0-4bf2-9c57-a9afb202a6a2","originalAuthorName":"张瑾"},{"authorName":"柳清菊","id":"22bee441-bf96-4780-a511-5a4c8426f828","originalAuthorName":"柳清菊"}],"doi":"","fpage":"2937","id":"643ffb0d-47b3-48fd-899d-257e589a82ca","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ad597d9b-f779-439a-817d-938d02595367","keyword":"纳米TiO2薄膜","originalKeyword":"纳米TiO2薄膜"},{"id":"36f27319-552f-4a62-9037-e52a1c8a7fa1","keyword":"低温制备","originalKeyword":"低温制备"},{"id":"0bc3f718-80b4-4cab-8758-0ee0bcd980de","keyword":"液相沉积","originalKeyword":"液相沉积"},{"id":"4382a269-7cac-43e1-9ae4-90fe6497138b","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"5d60678d-1613-42d2-b153-efe7c35bc5e1","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gncl2004z1822","title":"纳米TiO2薄膜的低温制备","volume":"35","year":"2004"},{"abstractinfo":"以钛酸丁酯为前驱体,采用溶胶-凝胶工艺制备了TiO2溶胶,并用浸渍提拉法在陶瓷基体上负载了TiO2薄膜.探讨了前躯体浓度和热处理方式对TiO2薄膜性能的影响.此外,通过XRD表征,检测了TiO2的晶体结构.结果表明:500℃下煅烧的TiO2薄膜为锐钛型结构;随着前驱体浓度的增大,薄膜的亲水性能变化不大,光降解性能逐渐提高;陶瓷片每负载一层TiO2薄膜后煅烧一次,薄膜的附着力提高.","authors":[{"authorName":"田守卫","id":"03aa58e2-53b3-41c5-b344-202063947b8d","originalAuthorName":"田守卫"},{"authorName":"王作辉","id":"533af0a6-bc89-43e4-97a7-814cdb23bbd4","originalAuthorName":"王作辉"},{"authorName":"刘阳思","id":"6285edf0-ce10-4f30-8425-5a42ec4485a9","originalAuthorName":"刘阳思"},{"authorName":"颜家振","id":"56dae8d0-b647-428c-b6f8-7de48a15b5b7","originalAuthorName":"颜家振"},{"authorName":"黄婉霞","id":"8d6669e6-80bf-4294-8903-8df9364d72ec","originalAuthorName":"黄婉霞"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.050","fpage":"189","id":"f0b5a709-5c05-421c-ae1c-d52d590463be","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ee11de7a-3272-48ee-8f46-a428969a7fd9","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"a7183da8-34e9-4c99-9987-d9f0518f7970","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"fdeca0df-8795-46a6-86c3-79589364214b","keyword":"光催化","originalKeyword":"光催化"},{"id":"8003aa17-f4d2-40b1-9fa4-ca3186fbb623","keyword":"亲水性","originalKeyword":"亲水性"}],"language":"zh","publisherId":"clgc2006z1050","title":"纳米TiO2薄膜的制备及其性能研究","volume":"","year":"2006"},{"abstractinfo":"用溶胶-凝胶法,以钛酸丁脂为先驱体、无水乙醇为溶剂、二乙醇胺为络合剂,以载玻片为基体采用溶胶-凝胶浸渍提升法制备纳米TiO2薄膜.探讨制备过程中影响薄膜质量的因素,用NDJ-8S数字显示粘度计测定溶胶在溶胶-凝胶过程中的粘度随存放时间的变化;差热分析仪分析有机物的热分解行为和晶型转变;红外光谱仪对干凝胶相组成进行分析;扫描电镜对薄膜的表面形貌、颗粒的均匀性等进行研究.结果表明:可在玻璃基体上镀上纳米TiO2薄膜;粘度随着陈化时间成正比关系;薄膜表面光滑,颗粒较均匀且达到纳米级颗粒.","authors":[{"authorName":"陈南春","id":"984d693b-e3d1-4404-bd11-3b48629ddcb2","originalAuthorName":"陈南春"},{"authorName":"韦翠美","id":"d4568f4f-deb4-47d0-8d55-a49a60f5435b","originalAuthorName":"韦翠美"}],"doi":"","fpage":"973","id":"e1878e62-9997-486a-ad8f-60f0eac36fca","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"feafbcb5-aa93-458b-9dd0-036928782ca6","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"d279d5de-9927-4197-9bd4-d3f9b8fd82dc","keyword":"制备","originalKeyword":"制备"},{"id":"defa6676-c697-4e91-a777-db7e7ac401f5","keyword":"纳米TiO2薄膜","originalKeyword":"纳米TiO2薄膜"}],"language":"zh","publisherId":"xyjsclygc2007z1275","title":"溶胶-凝胶法制备纳米TiO2薄膜","volume":"36","year":"2007"},{"abstractinfo":"综述了近年来纳米TiO2多孔薄膜材料的研究进展情况,对纳米TiO2多孔薄膜材料的各种制备方法及其特点进行了归纳和分析,并时纳米TiO2多孔薄膜材料的应用现状作了简要介绍.","authors":[{"authorName":"刘艳梅","id":"e2f5cfc2-2ed2-47d8-b177-cfddd36ff5b8","originalAuthorName":"刘艳梅"},{"authorName":"步绍静","id":"893f4831-2dd5-4473-b4c4-844db5ee5328","originalAuthorName":"步绍静"},{"authorName":"靳正国","id":"3630ddfe-2484-49f7-8036-6fb3b03e1f8b","originalAuthorName":"靳正国"},{"authorName":"刘晓新","id":"92049222-38b4-496c-ae38-66a753060530","originalAuthorName":"刘晓新"}],"doi":"10.3969/j.issn.1001-1625.2004.04.017","fpage":"63","id":"77a05a57-19b7-403f-a5b0-38f788379e1f","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c4b53b39-faf8-40cd-a5bd-be5d34f0534a","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"26f9db8e-e64e-4d91-acdb-5c7d0d43d1d6","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"fbae8e54-37ef-4777-b7ff-b8a30a3000c1","keyword":"多孔薄膜","originalKeyword":"多孔薄膜"}],"language":"zh","publisherId":"gsytb200404017","title":"纳米TiO2多孔薄膜的研究进展","volume":"23","year":"2004"},{"abstractinfo":"用溶胶-凝胶法制备了多孔TiO2纳米薄膜修饰的镍基电极.用STM观察了TiO2纳米薄膜的表面形貌.由STM知,随烧结温度升高和PEG(聚乙二醇)含量增加,TiO2纳米薄膜表面孔穴的数量增加,孔径增大.","authors":[{"authorName":"赵转清","id":"99331412-8eaa-4f36-925c-c0fa9d5f04ec","originalAuthorName":"赵转清"},{"authorName":"姚素薇","id":"ed688be3-800d-490e-b2ce-03f5211618ed","originalAuthorName":"姚素薇"},{"authorName":"张卫国","id":"4fdeb962-dbdd-4199-92de-54e2b2f4f016","originalAuthorName":"张卫国"},{"authorName":"龚正烈","id":"2717bebd-dcd6-47b3-a068-558f36160a73","originalAuthorName":"龚正烈"}],"doi":"","fpage":"75","id":"c295674f-b266-46cc-bdd7-53352e2d0d4e","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"be844856-b1f5-4257-bee3-2124ec246738","keyword":"TiO2 多孔纳米薄膜 STM PEG","originalKeyword":"TiO2 多孔纳米薄膜 STM PEG"}],"language":"zh","publisherId":"cldb200205024","title":"多孔TiO2纳米薄膜的制备及PEG对其表面形貌的影响","volume":"16","year":"2002"}],"totalpage":9709,"totalrecord":97082}