{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用示差扫描量热仪(DSC)研究了Zr57Cu15.4Ni12.6Al10Nb5块体非晶合金的匀速升温晶化与等温晶化的晶化行为.匀速升温晶化方式下,用Kissinger法与Ozawa法获得了块体非晶合金的激活能,对第一晶化峰分别为320.5kJ/mol和316.6kJ/mol,对第二晶化峰分别为324.5kJ/mol和320.5kJ/mol.该非晶合金的晶化表现出明显的动力学效应.等温晶化方式下,用Johnson-Mehl-Avrami方程获得了晶化的Avrami指数为1.61,表明非晶合金的晶化受原子扩散控制.","authors":[{"authorName":"杨元政","id":"93c23a7d-bb78-4a85-a9fc-dd6a14293aa2","originalAuthorName":"杨元政"},{"authorName":"","id":"cd714d4a-bd6d-4ff3-ab62-8a25dfdf12ac","originalAuthorName":"仇在宏"},{"authorName":"李喜峰","id":"2db88f3f-4150-4ed2-b88c-ab22ebd49a71","originalAuthorName":"李喜峰"},{"authorName":"赵德强","id":"be1924b8-5711-4e31-97ca-b72f03519980","originalAuthorName":"赵德强"},{"authorName":"谢致薇","id":"ed15a757-48ca-4374-9837-aaeed9a25efc","originalAuthorName":"谢致薇"},{"authorName":"匡同春","id":"8640042d-3c7a-4b0e-8240-5bbe0715275b","originalAuthorName":"匡同春"},{"authorName":"白晓军","id":"1375fd8c-d910-44a1-8b2c-05f6105c440b","originalAuthorName":"白晓军"}],"doi":"10.3969/j.issn.1009-6264.2005.04.009","fpage":"29","id":"0380ee5c-4fb2-47ac-a032-e2d6522676da","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"38bba37c-63d0-43fc-80e0-bae4fd820ec8","keyword":"ZrCuNiAlNb块体非晶合金","originalKeyword":"ZrCuNiAlNb块体非晶合金"},{"id":"6691610c-8efd-417f-b922-32ed88563cff","keyword":"晶化","originalKeyword":"晶化"},{"id":"59984a28-209e-48cf-b20f-a01517b2d85b","keyword":"激活能","originalKeyword":"激活能"},{"id":"7a672177-cba5-46be-bdeb-977780348553","keyword":"晶化指数","originalKeyword":"晶化指数"}],"language":"zh","publisherId":"jsrclxb200504009","title":"Zr57Cu15.4Ni12.6Al10Nb5块体非晶合金晶化行为研究","volume":"26","year":"2005"},{"abstractinfo":"用铜模吸铸法获得直径为2mm的Fe60Co8Zr10Mo5W2B15和Fe60Co8Zr8Mo5W2Nb2B1 5块体非晶合金.采用X射线衍射(XRD)、示差扫描量热分析(DSC)、显微硬度及压缩实验等研究了非晶合金的结构、热稳定性及热处理前后的显微硬度与压缩性能.结果表明Nb的引入不利于非晶合金的形成;Fe60Co8 Zr10Mo5 W2B15非晶合金的显微硬度为1343HV0.2,抗压强度σbc为972.6MPa;低于晶化起始温度的热处理,硬度稍有下降;但在高于晶化峰值温度的热处理,硬度值随时间变化先升高,后下降;热处理时间相同的条件下,随着热处理温度的升高,合金的硬度升高,但压缩强度会明显下降.","authors":[{"authorName":"杨元政","id":"e868508f-1695-4d11-b6e5-678dafa896ce","originalAuthorName":"杨元政"},{"authorName":"赵德强","id":"4e4992c5-3351-475c-9ba9-1027f99a2708","originalAuthorName":"赵德强"},{"authorName":"","id":"0369e0e6-6130-4ca6-8808-931fbf73d043","originalAuthorName":"仇在宏"},{"authorName":"陈小祝","id":"a9129277-c801-4c8f-8e40-da7eb46abe53","originalAuthorName":"陈小祝"},{"authorName":"谢致薇","id":"b3630d03-1b57-4ade-aca5-1fee5e76b114","originalAuthorName":"谢致薇"},{"authorName":"匡同春","id":"b164410e-7a1f-4428-b97c-eb2fa8d3cbf6","originalAuthorName":"匡同春"},{"authorName":"白晓军","id":"78708129-a36b-4cc5-a17d-1e3473d0fedd","originalAuthorName":"白晓军"}],"doi":"","fpage":"1682","id":"d4b0d405-fd39-400e-bba1-2ea23d0e8c7a","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b2630690-6b30-452d-be41-2ff9e239b1b0","keyword":"Fe60Co8Zr10Mo5W2B15块体非晶合金","originalKeyword":"Fe60Co8Zr10Mo5W2B15块体非晶合金"},{"id":"16e7ca9d-9d92-4d2f-b3df-ebdb967b8e2c","keyword":"热处理","originalKeyword":"热处理"},{"id":"41fb89d4-3a98-4754-8103-9befd0415ee5","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"ffca2afd-3d1c-4884-96ab-9267866c1e33","keyword":"压缩强度","originalKeyword":"压缩强度"}],"language":"zh","publisherId":"gncl200511011","title":"Fe60Co8Zr10Mo5W2B15块体非晶合金的形成及热处理对性能的影响研究","volume":"36","year":"2005"},{"abstractinfo":"对Zr57Cu15.4Ni12.6Al10Nb5块体非晶合金进行了等温热处理,用X射线衍射仪、扫描电镜、显微硬度计与压缩试验机研究了不同温度下的等温热处理后合金的组织结构变化、硬度变化与压缩性能变化.该非晶合金出现晶化的温度随热处理时间的增长而降低.热处理时间相同的条件下,随热处理温度升高,合金的显微硬度有增大趋势.当非晶合金出现相分离或晶化时,其抗压缩强度将急剧下降,断裂方式由非晶态的断裂方式向晶态的断裂方式转变.","authors":[{"authorName":"杨元政","id":"7ffa51ac-595d-49e8-90ec-f30504588160","originalAuthorName":"杨元政"},{"authorName":"李喜峰","id":"964ccf6e-8209-4e21-ac4d-9a93e1e911c3","originalAuthorName":"李喜峰"},{"authorName":"","id":"e5433cd5-f84c-4826-b525-8a3eae20ed73","originalAuthorName":"仇在宏"},{"authorName":"赵德强","id":"df85375d-c638-4d04-bc1c-5f70c5f0ea1c","originalAuthorName":"赵德强"},{"authorName":"谢致薇","id":"490972c4-9e23-4f9e-b510-0f7efdff0050","originalAuthorName":"谢致薇"},{"authorName":"匡同春","id":"bc1b6115-102a-412f-aa3e-b234662d0f4e","originalAuthorName":"匡同春"},{"authorName":"白晓军","id":"b537403b-2bba-4261-8568-9d6670eb845e","originalAuthorName":"白晓军"}],"doi":"","fpage":"1254","id":"46c7fffb-1f60-42a2-89b4-5806cea17e51","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"67bb83f1-0365-495e-bf24-ef6461db6510","keyword":"ZrCuNiAlNb块体非晶合金","originalKeyword":"ZrCuNiAlNb块体非晶合金"},{"id":"9b3f85eb-6f90-4e97-a95f-f72addbad8bb","keyword":"等温热处理","originalKeyword":"等温热处理"},{"id":"623f5ff1-b3ef-4b63-b2d9-a48be4555daf","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"b6e60ddf-4999-48ec-b82f-2898d635518e","keyword":"压缩性能","originalKeyword":"压缩性能"}],"language":"zh","publisherId":"xyjsclygc200608020","title":"等温热处理对Zr57Cu15.4Ni12.6Al10Nb5块体非晶合金的组织结构与压缩性能的影响","volume":"35","year":"2006"},{"abstractinfo":"综合评述了大块非晶合金形成的控制因素,从热力学、动力学和结构三个方面讨论了大块非晶合金的形成机理;并简介了大块非晶合金的制备技术和研究现状.","authors":[{"authorName":"赵德强","id":"42c9b39c-5dc4-4b12-8ad7-3c7f2faa038b","originalAuthorName":"赵德强"},{"authorName":"杨元政","id":"bee13de6-71f1-4382-84e1-b8be5d49c7e7","originalAuthorName":"杨元政"},{"authorName":"李喜峰","id":"b23410ec-5449-4920-991d-494ad325b081","originalAuthorName":"李喜峰"},{"authorName":"","id":"255a17d9-2374-4cb3-acab-61b3dac802cd","originalAuthorName":"仇在宏"}],"doi":"10.3969/j.issn.1005-8192.2003.03.011","fpage":"36","id":"62f6521c-a18e-43ee-842b-a0358e41de52","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"cfe24e05-501f-4ecd-a495-cfb6d8e933d1","keyword":"大块非晶合金","originalKeyword":"大块非晶合金"},{"id":"3be529d6-091d-4dab-a5b0-e91cc73e2b44","keyword":"控制因素","originalKeyword":"控制因素"},{"id":"0d7d577b-925a-4c93-aaf7-8917f5a6ea41","keyword":"综述","originalKeyword":"综述"},{"id":"4a1b3ed9-589f-4515-9a29-33a054051afc","keyword":"形成机理","originalKeyword":"形成机理"},{"id":"363196f8-eef1-428b-99a2-4ffdbe563902","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"jsgncl200303011","title":"大块非晶合金的形成能力及研究进展","volume":"10","year":"2003"},{"abstractinfo":"用铜模吸铸法制备直径2~3 mm的Cu60-xZr30Ti10M2(M=Mg、Al、Sn)系列非晶合金.用X射线衍射、差式扫描量热仪和硬度实验等研究它们的非晶形成能力、热稳定性与显微硬度.该系列非晶合金均表现出两级晶化行为.Cu60Zr30Ti10的玻璃转变温度为426.5℃,晶化起始温度为467.7℃,过冷液相区为41.2℃.添加Mg、Mo、Al对过冷液相区影响比较小,而添加Sn则使过冷液相区明显增大,达到51.6℃,合金的非晶形成能力有较明显提高,热稳定性增强.Cu60Zr30Ti10非晶合金的显微硬度为HV594.3,添加2%(摩尔分数)的Mg、Mo和Al对显微硬度影响不大,而添加2%Sn(摩尔分数)却使显微硬度达到HV755.7,提高27%.","authors":[{"authorName":"杨元政","id":"a7cb09ad-2e04-4ef7-9d0c-aaf6db833497","originalAuthorName":"杨元政"},{"authorName":"","id":"b832f9b1-94d2-43f8-b940-e4a736c91d97","originalAuthorName":"仇在宏"},{"authorName":"谢致薇","id":"e523aade-5083-4f20-a235-7221681ff438","originalAuthorName":"谢致薇"},{"authorName":"白晓军","id":"d86dfe1d-968d-4388-90cf-448ef2ba3ff3","originalAuthorName":"白晓军"}],"doi":"","fpage":"1155","id":"693ff9ee-a366-48b0-ba36-f6f420100ccb","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"4a37dfff-7dfd-4ec3-9c64-2d022bf17557","keyword":"Cu60-xZr30Ti10M2合金","originalKeyword":"Cu60-xZr30Ti10M2合金"},{"id":"b35f918e-f786-47f6-89a0-e968267d5290","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"6a39dcde-3478-4e65-8ec4-5fdb56e98ef9","keyword":"非晶形成能力","originalKeyword":"非晶形成能力"},{"id":"a0fb38ba-6f8f-468a-b3e5-a047a196fd17","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"zgysjsxb200607004","title":"合金元素对Cu60Zr30Ti10合金的非晶形成能力与显微硬度的影响","volume":"16","year":"2006"},{"abstractinfo":"本文叙述了锆基块体非晶合金的制备方法,优异的性能,特别是对其力学性能研究领域的最新进展进行了综述.并与传统晶态合金作了适当的对比,锆基块体非晶合金具有优异的力学性能,如弹性比功、超塑性、断裂韧性等,此类合金的应用将不断拓宽.","authors":[{"authorName":"","id":"de379242-4bbf-4486-ab82-0a562d2577df","originalAuthorName":"仇在宏"},{"authorName":"杨元政","id":"50e4542a-2944-4ac5-a0c7-9e85008df0a1","originalAuthorName":"杨元政"},{"authorName":"赵德强","id":"928fe487-8332-4013-9011-7506c956380a","originalAuthorName":"赵德强"},{"authorName":"李喜峰","id":"54e7d5b6-ebc6-44f5-83b4-1cdc39ec4e2e","originalAuthorName":"李喜峰"},{"authorName":"谢致薇","id":"4e862b15-aac1-40d7-8e37-7140dbfa075d","originalAuthorName":"谢致薇"}],"doi":"10.3969/j.issn.1005-8192.2004.05.008","fpage":"25","id":"dc80bf94-3f6f-4035-acac-f2cfa7a69c7a","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"2e6de6e3-b897-4f17-9b9b-34edef00d0aa","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"83c5c4c4-8a30-4e98-9ea1-c2255f937d15","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"c3b96de3-1fff-4a18-9ccb-437030068dff","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"jsgncl200405008","title":"锆基块体非晶合金的力学性能研究进展","volume":"11","year":"2004"},{"abstractinfo":"实验室中通过模拟装置对Q235钢土壤中的电池腐蚀行为进行了研究.结果表明,饱和/非饱和土壤环境的差异对金属的电池腐蚀具有决定性的作用;土壤的电阻率可以影响电池的电流分布.","authors":[{"authorName":"高立群","id":"53ba4774-c0b8-40b7-823e-77ef806b4f77","originalAuthorName":"高立群"},{"authorName":"李洪锡","id":"c5bd9149-887e-48dc-9192-4fca7b24e4dd","originalAuthorName":"李洪锡"},{"authorName":"孙成","id":"9c38d662-02aa-4c44-9931-dff5ad5448ff","originalAuthorName":"孙成"},{"authorName":"张淑泉","id":"21939267-8a35-412b-ae7d-bd3584819d96","originalAuthorName":"张淑泉"}],"doi":"10.3969/j.issn.1005-748X.2000.01.004","fpage":"12","id":"af178b23-7628-4fa2-a6f1-0276a4f3f1eb","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"418b0aba-1250-4260-92e7-e31615cc2be4","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"},{"id":"6d3000a8-e51a-493a-9c94-a797d35478f0","keyword":"电池腐蚀","originalKeyword":"宏电池腐蚀"},{"id":"a7ec575f-208c-46eb-8e4e-1b8fb5ed4a47","keyword":"Q235钢","originalKeyword":"Q235钢"}],"language":"zh","publisherId":"fsyfh200001004","title":"Q235钢土壤中电池腐蚀行为的研究","volume":"21","year":"2000"},{"abstractinfo":"利用电化学阻抗法和失重法,研究了X70钢卵石黄泥土中的盐浓差电池腐蚀.结果表明:试验初期高盐土样中X70钢为电池阳极,而在第5天发生极性逆转;电池阴阳极面积比增大,电池阳极的腐蚀速率也增大;随着试验时间的增加,自然埋藏在卵石黄泥土中的X70钢的腐蚀速率逐渐减小,而电池阳极一直保持着相当高的腐蚀速率.","authors":[{"authorName":"费小丹","id":"da09cf10-9998-4ddf-a123-33e31fa8b151","originalAuthorName":"费小丹"},{"authorName":"李明齐","id":"d1cb31a6-9630-4f20-9a01-c54a2eeccc37","originalAuthorName":"李明齐"},{"authorName":"蔡铎昌","id":"0768e615-b8c8-4522-a544-9915a97c4d5e","originalAuthorName":"蔡铎昌"},{"authorName":"许红梅","id":"cd2398a0-705a-42ba-b061-138dd18bd16a","originalAuthorName":"许红梅"}],"doi":"","fpage":"106","id":"b351fc92-0382-483b-a3d6-fd46f54f4786","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"90d77d62-8035-4762-93e1-a30c7037836b","keyword":"X70钢","originalKeyword":"X70钢"},{"id":"157ee66b-96c0-47cc-a3d4-c5160c37467d","keyword":"卵石黄泥土","originalKeyword":"卵石黄泥土"},{"id":"4da4be1a-0547-42db-8337-96bef1dfd610","keyword":"电池","originalKeyword":"宏电池"},{"id":"fa64005e-148d-4e5a-8ba4-75c98f1f599a","keyword":"电化学阻抗谱(EIS)","originalKeyword":"电化学阻抗谱(EIS)"}],"language":"zh","publisherId":"fsyfh200902010","title":"X70钢卵石黄泥土中的盐浓差电池腐蚀","volume":"30","year":"2009"},{"abstractinfo":"利用失重法、电化学阻抗测试等方法,研究了Q235钢污染土壤中的氧浓差电池腐蚀行为.实验结果表明,砂土中Q235钢为电池的阴极,粘土中Q235钢为阳极.随着实验时间的增加,粘土中Q235钢自然腐蚀速率逐渐减小,而粘土中作为电池阳极的Q235一直保持着较高的腐蚀速率.粘土中电池阳极的腐蚀速率为自然腐蚀速率的2.15倍.粘土电池中阴阳极面积比15:1情况下,阳极的腐蚀速率较阴阳极面积比1:1时增加了近1倍.","authors":[{"authorName":"刘焱","id":"c522a276-e674-4b98-be0a-cc909ba1f0c1","originalAuthorName":"刘焱"},{"authorName":"伍远辉","id":"bf5a789b-15f3-4781-bb99-9292708e3ece","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"ca8df6bf-c243-4ffa-8a0b-5bbdc6337935","originalAuthorName":"罗宿星"}],"doi":"","fpage":"438","id":"ecc4c842-633e-451a-b686-0569caa1400e","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"407ffe9e-36f9-485b-8b8f-fd956b74ce01","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"c1e4428b-5c16-428a-864a-bea5edc4a79a","keyword":"电池","originalKeyword":"宏电池"},{"id":"d35a40ab-8359-4ce7-8fc1-5a550e455d53","keyword":"粘土","originalKeyword":"粘土"},{"id":"6fa08cec-02b0-405e-a79b-a66c33fd8c78","keyword":"砂土","originalKeyword":"砂土"},{"id":"37c92b96-bd62-4a54-8e1e-d8fb681278f5","keyword":"电化学阻抗","originalKeyword":"电化学阻抗"}],"language":"zh","publisherId":"fsyfh200808003","title":"Q235钢污染土壤中的氧浓差电池腐蚀","volume":"29","year":"2008"},{"abstractinfo":"采用电化学测试和扫描电子显微镜等技术对模拟硫酸型酸雨作用下X70钢土壤电池腐蚀进行研究.结果表明,X70钢酸化后土壤中腐蚀电位较负,成为电池阳极,从而受到加速作用.电池阴阳极面积比增大,电池阳极的腐蚀速率也增大.当电池阴阳极面积比1∶1时,电池腐蚀强度系数γ为4.32;当电池阴阳极面积比15∶1时,电池腐蚀强度系数γ则达到18.29.","authors":[{"authorName":"王欣","id":"7e0f5555-421b-4572-ab11-47c90aa4d447","originalAuthorName":"王欣"},{"authorName":"许进","id":"8efdacda-3892-4fb1-87c4-2ba2ea633be0","originalAuthorName":"许进"},{"authorName":"孙成","id":"db6bb14a-61c2-4864-aff5-653272ba57ca","originalAuthorName":"孙成"},{"authorName":"王福会","id":"355be2fb-8dd8-4c76-ae32-00482b45d125","originalAuthorName":"王福会"}],"doi":"","fpage":"5","id":"adcffd4f-6af5-4d2d-921a-2a3313a59e0d","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"51b70f32-7c1c-400f-b53f-a9f3b832d438","keyword":"模拟硫酸型酸雨","originalKeyword":"模拟硫酸型酸雨"},{"id":"607e33be-78aa-4f53-af4b-4cf590f9f9db","keyword":"X70钢","originalKeyword":"X70钢"},{"id":"524a95cc-4e85-42c5-8571-266ba81616e7","keyword":"电池腐蚀","originalKeyword":"宏电池腐蚀"},{"id":"9c30813d-04f5-49fe-899c-70ea575dcfe0","keyword":"土壤","originalKeyword":"土壤"},{"id":"d3f0263a-a255-412e-80d7-37610a06458e","keyword":"腐蚀强度系数","originalKeyword":"腐蚀强度系数"}],"language":"zh","publisherId":"fsyfh201301002","title":"模拟硫酸型酸雨作用下的X70钢土壤电池腐蚀","volume":"34","year":"2013"}],"totalpage":12593,"totalrecord":125927}