{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用共沉积方法制备出掺杂Co的纳米β-Ni(OH)2,并对Co掺杂比例与材料性能的关系进行了研究.XRD、TEM测试结果表明,利用共沉积法可以制备出不同掺杂Co比例的纳米β-Ni(OH)2,随着Co掺杂比例的增大,材料的晶格缺陷明显增多,晶格参数和表面型貌也发生相应的变化.利用微电极的循环伏安(CV)行为研究表明,掺杂后材料的循环伏安性均较掺杂前有所改善,且Co的掺杂比例对材料的氧化峰电位(EP,a)、还原峰电位(EP,c)及质子扩散系数(D)均产生影响,当Co的掺杂比例为5%时,材料的质子扩散性能相对最好.","authors":[{"authorName":"赵力","id":"72c3c18d-f2b7-4606-9007-956b49bb7d2b","originalAuthorName":"赵力"},{"authorName":"","id":"b6380e7c-8d16-458a-a96c-026e3bd02728","originalAuthorName":"韩喜江"},{"authorName":"林剑斌","id":"b5c04469-54ee-400c-9021-8f250a07eabf","originalAuthorName":"林剑斌"},{"authorName":"马亚旗","id":"4dd8c66e-432e-418b-bc60-c66c75e761c0","originalAuthorName":"马亚旗"}],"doi":"","fpage":"1276","id":"1d4db744-e98c-4c8e-aa86-80af42f0ae8a","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ccaef19b-a44c-4bea-aa3c-1457e3555c00","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"cb060c4b-c786-41dd-948d-6feed515dfa1","keyword":"Ni(OH)2","originalKeyword":"Ni(OH)2"},{"id":"5d9c2448-0fd5-49f4-b85a-df1a0daa345f","keyword":"Co","originalKeyword":"Co"},{"id":"89d308af-7e48-46bf-be2e-42e981793402","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"gncl200608028","title":"掺杂Co纳米β-Ni(OH)2的制备及其循环伏安行为","volume":"37","year":"2006"},{"abstractinfo":"首次采用沉淀转化法制备出球形纳米β-Ni(OH)2,认为反应转化pH值与体系中表面活性剂浓度是纳米颗粒形貌和尺寸的主要影响因素.通过粉末微电板研究了纳米材料的循环伏安特性及质子扩散性能;将实验中所制得的两种不同形状的纳米级Ni(OH)2以8%质量分数)比例与微米级球形Ni(OH)2混合制得复合电板,进行充放电实验及不同荷电状态下的电化学阻抗实验.结果表明:球形纳米Ni(OH)2具有优越的循环伏安特性,较强的质子扩散能力;球形纳米Ni(OH)2较片状纳米Ni(OH)2更有利于提高电极容量,降低电化学反应电阻.","authors":[{"authorName":"张利军","id":"070cdaee-cdbd-45f8-99d8-9443799fc911","originalAuthorName":"张利军"},{"authorName":"徐崇泉","id":"62b1d32e-0ff3-451f-a807-ebb3477bcb14","originalAuthorName":"徐崇泉"},{"authorName":"赵力","id":"c9bee508-af72-4536-a96c-00bf500939af","originalAuthorName":"赵力"},{"authorName":"","id":"ebd1560f-2f16-4528-a024-7b5d58ab4b21","originalAuthorName":"韩喜江"}],"doi":"","fpage":"2721","id":"436e1018-ea8a-4139-a3a8-bc3fb756d5be","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fda9a1bf-a179-4d5b-b8db-517fddfdf339","keyword":"沉淀转化法","originalKeyword":"沉淀转化法"},{"id":"aefeb90d-8c00-423d-8589-53067b5f4e40","keyword":"球形纳米Ni(OH)2","originalKeyword":"球形纳米Ni(OH)2"},{"id":"f8b44959-98c9-4465-820a-03d7865f6cac","keyword":"粉末微电极","originalKeyword":"粉末微电极"},{"id":"8cc09743-c61e-4308-889a-8efb48d2f1b1","keyword":"电化学阻抗","originalKeyword":"电化学阻抗"}],"language":"zh","publisherId":"gncl2004z1761","title":"球形纳米β-Ni(OH)2的制备及其电化学性能研究","volume":"35","year":"2004"},{"abstractinfo":"采用乙烯基三甲氧基硅烷偶联剂对羰基铁粉94RC进行表面包覆改性,制备了不同厚度的改性羰基铁粉-氯丁橡胶复合薄膜.实验表明,单层复合薄膜厚度为1.58、面密度为3.30kg/m2时,吸收率超过-8dB的合格带宽达到5.2GHz,增加单层膜的厚度,可以使最大吸收峰值向高频移动,并使吸收频带增宽.根据电磁波传播特性和阻抗匹配原理设计并制备了由透波层、过渡吸收层、强磁损耗层组成的厚度0.64、面密度0.71kg/m2的3层复合薄膜,其最大吸收率为-13.45dB,吸收率超过-8dB的合格带宽5.51GHz.","authors":[{"authorName":"谭延","id":"7a1547dd-aaa3-4332-9e4b-09633847e8e1","originalAuthorName":"谭延江"},{"authorName":"","id":"f9c6952d-346c-480c-91e9-57055e2d574d","originalAuthorName":"韩喜江"},{"authorName":"王晓红","id":"20e6d713-a4b7-4c65-bc9e-c58806313cb9","originalAuthorName":"王晓红"},{"authorName":"陈旺俊","id":"25ef58fb-dece-493c-813a-b039601f839b","originalAuthorName":"陈旺俊"}],"doi":"","fpage":"2098","id":"60916197-0528-4009-b216-d66b9ce7fdb5","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b1739ffc-7b8f-4a4d-b711-58a6314fc4eb","keyword":"羰基铁粉","originalKeyword":"羰基铁粉"},{"id":"b99905fa-9ab7-41da-ab57-5b65a493ef21","keyword":"氯丁橡胶","originalKeyword":"氯丁橡胶"},{"id":"3114bdef-2b9c-45d3-8ef6-112c0652db51","keyword":"复合薄膜","originalKeyword":"复合薄膜"},{"id":"8d695042-084c-4b25-ae71-1b88b9a2eb47","keyword":"吸波特性","originalKeyword":"吸波特性"},{"id":"fb56a3cb-54de-45b2-8139-8036a84e0d4c","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"gncl200812047","title":"改性羰基铁粉-氯丁橡胶复合薄膜吸波特性研究","volume":"39","year":"2008"},{"abstractinfo":"为了克服传统Pt系催化剂价格昂贵、稳定性差的缺点,采用热解新型TiO2/聚苯胺(PANI)复合物的方法合成了TiO2/C催化剂。用扫描电子显微镜、X射线光电子能谱、X射线衍射、傅里叶变换红外光谱、拉曼光谱、透射电子显微镜、循环伏安法和线性扫描伏安法等方法研究了热处理和PANI复合比例对复合物的形貌、成键、晶相组成及氧还原性能的影响。结果表明, PANI与TiO2间存在相互作用,可以抑制TiO2的团聚和锐钛矿向金红石的转变。热处理制得TiO2/C的氧还原活性随着PANI载体含量增加先升高后降低, PANI和TiO2质量比为35/100时,催化剂的氧还原活性最高。同时,循环伏安和时间-电流曲线测试表明,已制备的复合材料在催化氧还原反应进行时具有较好的稳定性。","authors":[{"authorName":"邹志娟","id":"e3acfc13-c71a-45f9-8935-f48135279494","originalAuthorName":"邹志娟"},{"authorName":"程皓","id":"93ed5619-f6bd-40f8-95bf-62fc918cf61b","originalAuthorName":"程皓"},{"authorName":"王靖宇","id":"61d94991-7c2f-4e67-880c-bd8ca7190e73","originalAuthorName":"王靖宇"},{"authorName":"","id":"bf67a5bf-6630-44d3-aa48-5459691e9962","originalAuthorName":"韩喜江"}],"doi":"10.1016/S1872-2067(14)60223-0","fpage":"414","id":"7f8a3bec-ee3b-4795-ba71-8e97e709a3c6","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"322fd6eb-0b09-40a7-a849-b6245d28e3ef","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"5690656f-2470-49d4-ad63-874a09f469d9","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"358add63-05d8-41d4-9d09-03af6cadf0a1","keyword":"热解","originalKeyword":"热解"},{"id":"51d9936b-2a4d-43d0-ba86-4de967bfbd4d","keyword":"阴极催化剂","originalKeyword":"阴极催化剂"},{"id":"4437a35b-fa26-421e-8bf6-853a035e7180","keyword":"氧还原","originalKeyword":"氧还原"}],"language":"zh","publisherId":"cuihuaxb201503024","title":"热解二氧化钛/聚苯胺制备高效非贵金属氧还原电催化剂","volume":"","year":"2015"},{"abstractinfo":"综述了铝及其合金的腐蚀机理与缓蚀剂研究的进展,以及有关缓蚀剂筛选、评价的方法.","authors":[{"authorName":"周育红","id":"e7c6fe82-f7b1-4cf7-9fe1-9a99eaacb696","originalAuthorName":"周育红"},{"authorName":"田秀丽","id":"5c57fb3d-8e0a-450c-a03a-64c8177ce56a","originalAuthorName":"田秀丽"},{"authorName":"","id":"6392391b-f3a4-4ff6-bea1-fc9cc44df89f","originalAuthorName":"韩喜江"},{"authorName":"周德瑞","id":"ed133320-da31-4174-9318-4a9c7450cd47","originalAuthorName":"周德瑞"}],"doi":"","fpage":"52","id":"cb89b676-d91c-4109-92f7-d0eca8549495","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"94a754a8-1b41-4ab8-9380-6a873e897ac1","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"a2678613-7eec-40dc-b6d2-fe0192017079","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"e1db4a23-8074-41c5-af67-79d9ec976c88","keyword":"检测手段","originalKeyword":"检测手段"}],"language":"zh","publisherId":"fskxyfhjs201001014","title":"铝及其合金在NaCl溶液中缓蚀剂的研究进展","volume":"22","year":"2010"},{"abstractinfo":"采用原位化学沉淀法将Fe3O4与石墨复合,研究了不同复合比例对吸波性能的影响.结果表明:随着Fe3O4负载量的增加,复合材料中Fe3O4的X射线衍射峰增强;Fe3O4主要沉积在石墨表面,随着Fe3O4负载量的增加,对石墨表面的包覆越完整,但也有一些Fe3O4纳米颗粒散落在石墨颗粒之间;复合材料的介电常数随Fe3O4负载量的增大而减小,磁导率变化较小;在Fe3O4与石墨不同质量比复合材料中,质量比为5∶1和4∶1的复合材料表现出较好的吸波效果,在厚度为1.5mm时,质量比为5∶1样品吸收峰值达-31.9dB,大于-10dB的吸收频带宽为5.0GHz.","authors":[{"authorName":"李雪爱","id":"dbcef04a-6f73-494b-9eef-d387f5735fc4","originalAuthorName":"李雪爱"},{"authorName":"王春生","id":"a66c4b5c-cce7-4954-8ff2-722d2593a537","originalAuthorName":"王春生"},{"authorName":"","id":"2335adb0-d25d-44db-96ea-db823b1366a2","originalAuthorName":"韩喜江"}],"doi":"10.11868/j.issn.1001-4381.2015.05.008","fpage":"44","id":"b3d99351-0ba7-43de-b464-8086ea50af4d","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"68dd3d16-e099-49d7-b903-b06036d12fbd","keyword":"Fe3O4","originalKeyword":"Fe3O4"},{"id":"aec3abda-8bc9-47b0-93a3-54e362ab8b29","keyword":"石墨","originalKeyword":"石墨"},{"id":"86b49a67-5f2d-420b-bd7d-ee17b384d0ab","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"2daa2ed8-7617-4547-9ac0-bdf809e99912","keyword":"原位化学沉淀法","originalKeyword":"原位化学沉淀法"},{"id":"791a0a4f-1fe4-45e2-a13a-36f41a60b339","keyword":"吸波性能","originalKeyword":"吸波性能"}],"language":"zh","publisherId":"clgc201505008","title":"原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能","volume":"43","year":"2015"},{"abstractinfo":"采用稳态平板法测定了皮法炼镁工艺物料的导热系数.结果表明:温度升高,原料中硅铁配入量增加,以及添加CaF2都能提高物料的导热系数.随着还原反应进行,物料的导热系数降低.添加CaF2将降低还原渣的导热系数.对于添加3% CaF2的还原原料导热系数与温度的关系为λ=2.88×10-4T+0.14;添加3% CaF2、还原率为78%的还原渣的导热系数与温度的关系为λ=4.95×10-5T+0.08.","authors":[{"authorName":"傅大学","id":"d847e28f-99b5-4932-85cb-f12f9f74298b","originalAuthorName":"傅大学"},{"authorName":"张伟","id":"88fee241-475d-4617-b0d5-49b2ff9d2d15","originalAuthorName":"张伟"},{"authorName":"王耀武","id":"5e5d1d50-bdad-4a2c-9837-846c6db7c1ca","originalAuthorName":"王耀武"},{"authorName":"彭建平","id":"cb0690af-7750-4c58-a150-de7065853571","originalAuthorName":"彭建平"},{"authorName":"狄越忠","id":"e9661133-b813-4a74-8290-bd2d2b842598","originalAuthorName":"狄越忠"},{"authorName":"陶绍虎","id":"aeb860b4-e217-4b29-819e-8387888aaef5","originalAuthorName":"陶绍虎"},{"authorName":"冯乃祥","id":"bb069f11-ba99-496c-9d98-9b61be565525","originalAuthorName":"冯乃祥"}],"doi":"","fpage":"171","id":"cb467d6b-e315-417d-9813-029b5d926255","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"e70201cf-8433-4ced-be49-1fe09734e57c","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"bf2a6d99-63da-46d8-a1f4-e335076f27bb","keyword":"平板法","originalKeyword":"平板法"},{"id":"6d5c176d-92d8-4272-a112-b02ac6a15dbb","keyword":"还原","originalKeyword":"还原"},{"id":"f9bbe252-f802-42ce-bc9d-072d9762f3f6","keyword":"皮法","originalKeyword":"皮江法"}],"language":"zh","publisherId":"clyyjxb201203004","title":"皮法物料导热系数测定","volume":"11","year":"2012"},{"abstractinfo":"氧化亚铁微螺菌和温嗜酸硫杆菌是浸矿细菌的一种两种常见的浸矿细菌,为了测定重金属镍离子对它们活性的影响,设置了不同浓度镍离子的摇瓶实验,在温度为45℃,转速为150 r/min的条件下开展实验.结果表明:镍离子浓度在小于2g/L时,氧化亚铁微螺菌和温嗜酸硫杆菌的活性不受影响;镍离子浓度在4 g/L时,细菌的活性受到影响,活性降低,但通过自身的调节作用,还可以继续生长;镍离子浓度大于8g/L时,细菌几乎不生长.","authors":[{"authorName":"赵雪淞","id":"c41990c4-9f7f-406a-a791-d585aedbe25a","originalAuthorName":"赵雪淞"},{"authorName":"石倩倩","id":"e8f25a97-a08d-46c1-a258-bfe74ae6a187","originalAuthorName":"石倩倩"},{"authorName":"李彩霞","id":"cab27d73-6c81-4e21-95f6-f9e51853c375","originalAuthorName":"李彩霞"},{"authorName":"张孝松","id":"1f12ce0f-f7f2-4ced-bd69-6b02a17c2f19","originalAuthorName":"张孝松"}],"doi":"","fpage":"306","id":"470e9a9b-52d5-4e26-9e5a-079455663906","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"93aede27-05cf-4136-850e-179716c38ae3","keyword":"氧化亚铁微螺菌","originalKeyword":"氧化亚铁微螺菌"},{"id":"483e3eb5-044d-48ce-9b18-5ff784877f77","keyword":"温嗜酸硫杆菌","originalKeyword":"喜温嗜酸硫杆菌"},{"id":"8d4e16fc-1eb5-48ec-9302-947f76d8d75e","keyword":"活性","originalKeyword":"活性"},{"id":"c4f5f4a7-c001-4af2-ae40-9e937e8ff225","keyword":"镍离子","originalKeyword":"镍离子"}],"language":"zh","publisherId":"gsytb201601054","title":"镍离子对氧化亚铁微螺菌和温嗜酸硫杆菌活性的影响","volume":"35","year":"2016"},{"abstractinfo":"自云南酸性热泉水样中分离出一株中度嗜热硫氧化菌YN12.对其形态特征和生理生化特性以及16S rDNA序列分析结果证明,该菌株归属于温嗜酸硫杆菌(Acidithiobacillus caldus).重金属抗性实验表明,YN12菌株对3CdSO4-8H2O具有超强抗性,其最高初始Cd2+耐受浓度达4.8 g/L.在此基础上,不断提升3CdSO4-8H2O浓度,其最终Cd2+耐受浓度可达31.5 g /L(相当于3CdSO4-8H2O 210 g/L).在该最终Cd2+耐受浓度下,经过连续3代的适应性生长,YN12菌株的生长速度和硫氧化活性均能得到较好的恢复.","authors":[{"authorName":"丁建南","id":"176e4ae4-0084-4c41-9f88-19e3eaba636e","originalAuthorName":"丁建南"},{"authorName":"朱若林","id":"e188e17e-7e7b-4041-858b-f85cd40dafe4","originalAuthorName":"朱若林"},{"authorName":"康健","id":"ef9888eb-1178-4ff2-aea6-466a2e1c4d4e","originalAuthorName":"康健"},{"authorName":"张成桂","id":"9d980e84-be2e-4902-8212-963ebc81be9f","originalAuthorName":"张成桂"},{"authorName":"吴学玲","id":"577995ab-02ac-40af-b479-144aaf1b0729","originalAuthorName":"吴学玲"},{"authorName":"邱冠周","id":"db912e11-9e9f-4a1b-a6df-670482e6a1f0","originalAuthorName":"邱冠周"}],"doi":"","fpage":"342","id":"bd276956-9b07-49a0-bdc9-c2de83f89b4e","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c6864f0d-91e7-4976-9ab8-c7b19a5b50ec","keyword":"温嗜酸硫杆菌","originalKeyword":"喜温嗜酸硫杆菌"},{"id":"33fef14d-6b3f-4b18-9ec6-b824a2645a29","keyword":"YN12菌株","originalKeyword":"YN12菌株"},{"id":"22e81fdd-94bb-45e7-8e8f-33e2238c6cce","keyword":"镉抗性","originalKeyword":"镉抗性"},{"id":"5681b107-a535-424e-8a39-4614ac6a6c7c","keyword":"最高耐受浓度","originalKeyword":"最高耐受浓度"}],"language":"zh","publisherId":"zgysjsxb200802026","title":"温嗜酸硫杆菌YN12菌株的鉴定及其镉抗性能","volume":"18","year":"2008"},{"abstractinfo":"通过对重庆嘉陵石门大桥钢索、混凝土桥墩、索塔和桥面的实地调查和走访,分析了石门大桥钢结构部分和混凝土部分存在的严重的腐蚀问题,提出了一些混凝土腐蚀防护的合理建议.","authors":[{"authorName":"曾荣昌","id":"14e6ded0-a9fb-4513-bf5f-ecf75401f105","originalAuthorName":"曾荣昌"},{"authorName":"靳强","id":"b748c834-deb4-4086-8e7a-d0acb492f3d2","originalAuthorName":"靳强"},{"authorName":"赖文超","id":"ab195b9e-6275-44f8-92c8-d08e67e238ef","originalAuthorName":"赖文超"},{"authorName":"王俊","id":"68778039-d3cc-4faf-b146-4819ea62b134","originalAuthorName":"王俊"},{"authorName":"陈君","id":"59828313-f8c7-4df3-ba92-c2ab881a719b","originalAuthorName":"陈君"}],"doi":"","fpage":"72","id":"4a0ac174-4019-41b0-9726-95bd6440c6b5","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"cd70e03c-aa3c-4119-aa1b-6ef1146bcafc","keyword":"桥梁","originalKeyword":"桥梁"},{"id":"2a42f3bf-fc16-4a4c-bf2b-9c5dbd6c86a1","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"a7c1b281-dfc4-429c-bb38-7056521eafb0","keyword":"防护","originalKeyword":"防护"},{"id":"7c9716b0-ee26-4fbf-8d89-b2940176ae90","keyword":"调查","originalKeyword":"调查"}],"language":"zh","publisherId":"clbh200902023","title":"重庆嘉陵石门大桥腐蚀防护调查及建议","volume":"42","year":"2009"}],"totalpage":8,"totalrecord":75}