{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用有限元软件ANSYS建立了磁流变液的单链力学模型,考虑颗粒的非线性磁化及磁化饱和过程,计算了单链的磁场分布,以及单链中颗粒数量对剪切力的影响。基于统计力学的方法,从磁流变液的微结构出发,利用Maxwell应力张量,得到了磁流变液的力学响应特性,计算结果能较好地描述有关实验现象,表明有限元方法可用于磁流变液实际问题的分析,这对新型高性能磁流变液材料的设计具有一定的指导作用。","authors":[{"authorName":"易成建","id":"f5071c2d-0d4c-4ce1-83d3-a38d638abfb1","originalAuthorName":"易成建"},{"authorName":"彭向和","id":"99e1ea29-9279-4da9-a764-3925f21eba23","originalAuthorName":"彭向和"},{"authorName":"孙虎","id":"34c18209-fdb3-4640-bb74-3bf56ec8f27f","originalAuthorName":"孙虎"}],"doi":"","fpage":"1500","id":"d22d4fd7-f020-4d87-b9cb-52c09c18e728","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b4516795-aae2-4591-b4d0-3240d32bbb55","keyword":"磁流变液","originalKeyword":"磁流变液"},{"id":"96363f63-0b1c-4693-9dee-df2fe93d91cd","keyword":"磁化状态","originalKeyword":"磁化状态"},{"id":"becc730f-152a-4212-b3aa-4b2e7882ed03","keyword":"宏微观特性","originalKeyword":"宏微观特性"},{"id":"9bc1858d-86f8-4642-8bb7-1ec2b1c1222d","keyword":"有限元分析","originalKeyword":"有限元分析"}],"language":"zh","publisherId":"gncl201108041","title":"基于有限元方法的磁流变液微结构磁化及宏观力学特性分析","volume":"42","year":"2011"},{"abstractinfo":"针对盐酸溶液(pH=2)浸泡后水泥土的宏微观性状,本文借助室内宏观直剪试验和微观扫描电子显微镜试验,研究了其宏观抗剪强度指标(内聚力、内摩擦角)随侵蚀龄期的变化、内部微结构在侵蚀过程中的动态演变过程、以及化学腐蚀机理,丰富了水化学环境下岩土体的宏微观性能的研究.试验结果显示表明,水泥土在盐酸溶液(pH=2)侵蚀下,其抗剪性能随浸泡龄期的延续呈衰减趋势;内部矿物成分与盐酸溶液发生反应,生成易溶物质,致使微结构越来越松散、宏观强度越来越低.相关试验结果对水泥土在具有侵蚀性离子地区的合理应用及工程设计具有一定的参考价值.","authors":[{"authorName":"张华杰","id":"f96e88e7-3e9b-46ab-bfcb-4b4ef8aafc20","originalAuthorName":"张华杰"},{"authorName":"韩尚宇","id":"50e9ebf4-468f-4930-b1fe-9b396425b385","originalAuthorName":"韩尚宇"},{"authorName":"洪宝宁","id":"fff41a55-c7ac-4bf0-a4e6-95bcd6b22c2c","originalAuthorName":"洪宝宁"},{"authorName":"周宇泉","id":"48cec173-4361-47ac-9717-68439ee30cb8","originalAuthorName":"周宇泉"}],"doi":"","fpage":"291","id":"d92d5df8-5a97-4856-a332-49bcb03b4858","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4b4500df-97f2-42a9-94d3-99ff20f789a2","keyword":"水泥土","originalKeyword":"水泥土"},{"id":"9922717f-4235-4692-9c89-e77315997b3b","keyword":"盐酸溶液","originalKeyword":"盐酸溶液"},{"id":"ae5af235-3f9a-4df1-bb42-cd77c1bc6839","keyword":"抗剪强度指标","originalKeyword":"抗剪强度指标"},{"id":"de34fa82-f153-4555-92be-3bbb535ac641","keyword":"微结构","originalKeyword":"微结构"},{"id":"b4dab75c-5c88-49f6-87ba-47fbd17033c0","keyword":"侵蚀机理","originalKeyword":"侵蚀机理"}],"language":"zh","publisherId":"gsytb201402011","title":"盐酸溶液(pH=2)下水泥土的宏微观特性试验研究","volume":"33","year":"2014"},{"abstractinfo":"介绍了在先进复合材料的宏微观力学与强韧化设计领域内的国际发展趋势和国内发展状况、研究的科学意义、主要研究内容和面临的挑战、先进复合材料强韧化机制和原理、复合材料的宏微观力学理论与强韧化设计基本方法、存在的难点问题和发展方向.","authors":[{"authorName":"方岱宁","id":"84236990-677f-4f78-9dcc-ee5ffa0a2cc4","originalAuthorName":"方岱宁"}],"doi":"10.3321/j.issn:1000-3851.2000.02.001","fpage":"1","id":"6167e56d-f515-4643-bd15-8064271a38c0","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8f6bae43-701a-49f7-9a4d-01bf7c9afb85","keyword":"先进复合材料","originalKeyword":"先进复合材料"},{"id":"a3fdb43e-0cfa-4e0e-abb4-f94069b71e8c","keyword":"宏微观力学","originalKeyword":"宏微观力学"},{"id":"931287f4-ddd0-470a-b7b6-c0cb03e34b37","keyword":"强韧化设计","originalKeyword":"强韧化设计"}],"language":"zh","publisherId":"fhclxb200002001","title":"先进复合材料的宏微观力学与强韧化设计:挑战与发展","volume":"17","year":"2000"},{"abstractinfo":"通过分析导线在火灾中形成熔痕的过程,归纳了火烧熔痕、短路熔痕和过负荷熔痕的宏、微观特征,据此可分析电气火灾事故的成因,提出了用金相分析并结合现场勘查的方法来正确鉴定火灾的原因.","authors":[{"authorName":"徐娜","id":"0c58444e-fd8e-486d-95c2-f7e522b5198b","originalAuthorName":"徐娜"},{"authorName":"李恩霞","id":"1b5f6ecd-1673-414d-8da2-c013b9e58b3e","originalAuthorName":"李恩霞"},{"authorName":"时军波","id":"1e35b0e1-87d6-4e27-a621-dd06c7866141","originalAuthorName":"时军波"},{"authorName":"李永德","id":"77192098-0717-4cc1-b56d-87f8f79e207e","originalAuthorName":"李永德"},{"authorName":"郭卫民","id":"80c9f5dc-bd2d-40b5-8e43-5fad813bfd9f","originalAuthorName":"郭卫民"},{"authorName":"颜国刚","id":"80c94203-9f3e-48d7-bcdf-e71bff5b6e44","originalAuthorName":"颜国刚"}],"doi":"","fpage":"103","id":"34a462ba-ffbd-4a93-94d0-3dae2e3cf153","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e92cf063-653a-41f3-b43e-cefb24687009","keyword":"火灾","originalKeyword":"火灾"},{"id":"e45e1fd3-ae69-45f2-899e-9473b0c749ce","keyword":"短路","originalKeyword":"短路"},{"id":"9e9f1e4f-08c5-4087-ab7a-cd1b1a5fdbfb","keyword":"过负荷","originalKeyword":"过负荷"},{"id":"0ceceadf-e237-4386-99a7-e85afc684c30","keyword":"熔痕","originalKeyword":"熔痕"},{"id":"66daee83-ff50-4fbb-acdf-f1d70401ae07","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"jxgccl201309024","title":"电气火灾中导线熔痕的宏微观特征","volume":"37","year":"2013"},{"abstractinfo":"用原位SEM观测研究了粉末冶金BeAl材料应力控制的疲劳机制.断裂时,低应力疲劳比高应力的平均累积塑性应变小得多.前者的累积塑性应变变化速率随着循环次数增大明显减小,后者则接近线性变化规律,表明高应力水平下的疲劳损伤累积更接近线性假设.低应力疲劳可从表面观测到一条疲劳主裂纹,由微观尺度下的累积塑性应变控制;高应力水平疲劳加载初期很快有宏观尺度的累积塑性应变,使Be与Al结合相界面同时产生较多裂纹.裂纹主要沿Al和Be结合强度较弱的表面路径扩展,随后沿纵深方向扩展,在材料内部裂纹扩展方向会变为与加载方向平行的Be基滑移面方向.当裂纹达到临界尺寸,局部塑性应变控制变为主应力方向控制,促使裂纹向前方扩展,宏观断口呈现出有层次的撕裂型.","authors":[{"authorName":"吴艳青","id":"968a5dd8-1ca6-48b2-8176-2bf4368f83b1","originalAuthorName":"吴艳青"},{"authorName":"牛莉莎","id":"22dface1-9b34-4eeb-82e8-6699db3590bd","originalAuthorName":"牛莉莎"},{"authorName":"施惠基","id":"9cd87e05-b831-4c52-9625-5c8a0bc1c15a","originalAuthorName":"施惠基"},{"authorName":"王战宏","id":"16e848b4-9b91-48f4-a5c5-2f36a8cf09c7","originalAuthorName":"王战宏"}],"doi":"","fpage":"890","id":"5c070527-701e-4f67-8c93-ae8f3b145dc2","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a6579661-663d-488e-84f0-ba4c9c880a73","keyword":"BeAl材料","originalKeyword":"BeAl材料"},{"id":"aee0bf5b-034c-43b0-92b1-a2b6b186f9f1","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"1876b808-f637-4272-83f7-80c866c38c8b","keyword":"疲劳机制","originalKeyword":"疲劳机制"},{"id":"f26c62e4-9318-4278-b9c6-6ded52d3af61","keyword":"SEM原位观测","originalKeyword":"SEM原位观测"},{"id":"7dcb7b58-12e6-4df8-ac22-be42107829d3","keyword":"累积塑性应变","originalKeyword":"累积塑性应变"}],"language":"zh","publisherId":"xyjsclygc200606011","title":"粉末冶金BeAl材料疲劳性能宏微观分析","volume":"35","year":"2006"},{"abstractinfo":"由于纤维增强复合材料内部结构固有的复杂性, 目前还没有一种理论和方法能很好地解决带缺陷的复合材料的断裂问题.本文发展了一种宏微观结合模型, 用有限元方法计算复合材料的断裂问题, 得到了一些有意义的结果.","authors":[{"authorName":"郭玉翠","id":"992ec964-91e5-444b-b8a5-c43f352c207f","originalAuthorName":"郭玉翠"},{"authorName":"范天佑","id":"ccc30932-81ab-49ef-ac71-4295ead4c928","originalAuthorName":"范天佑"}],"doi":"10.3321/j.issn:1000-3851.1999.01.024","fpage":"137","id":"c0662545-9d3a-47d4-8b5d-32b8feac8b76","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"3f141df4-a243-4bae-a11f-e6c1b081f3be","keyword":"纤维增强复合材料","originalKeyword":"纤维增强复合材料"},{"id":"c722483a-1fc2-45c3-b4ad-f1633ca3c3a7","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"37626846-a939-474a-8a07-cb8ea11357f8","keyword":"内区","originalKeyword":"内区"},{"id":"71acf93b-63f0-4354-921e-18de9dc48d31","keyword":"外区","originalKeyword":"外区"},{"id":"39d2a043-a29a-4586-ab2b-12e7002b843f","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"fhclxb199901024","title":"纤维增强复合材料断裂的宏微观结合模型","volume":"16","year":"1999"},{"abstractinfo":"针对熔体发泡法制备泡沫镁存在的困难,使用包覆发泡剂及改进工艺成功制得泡孔均匀的泡沫镁试样.利用OM、SEM、EDS及XRD等分析手段对试样进行宏微观结构表征.结果表明:泡沫镁试样宏观孔以典型的闭孔结构为主,但也存在一些连通孔及少量大孔,它们多是宏观裂纹的产生及扩展位置.泡孔内壁存在一些褶皱缺陷,且弥散分布着许多反应产生的MgO和CaO颗粒,压缩变形过程中,这些部位易产生应力集中,促进微裂纹的形成与扩展.孔壁上主要分布着碳化硅颗粒及生成的Mg2Ca相.测试分析了孔隙率和孔径对泡沫镁压缩力学性能和能量吸收性能的影响,并深入研究其压缩破坏机理.研究发现:随着孔隙率的降低,泡沫镁弹性变形增大,屈服强度升高;随着孔径的增大,泡沫镁屈服强度及平台应力明显减小,表现出显著的孔径效应.随着孔隙率的升高或孔径的增大,泡沫镁的能量吸收性能显著降低.泡沫镁的破坏为解理脆性断裂,这与孔壁组织及镁基体性质有很大的关系.","authors":[{"authorName":"许正斌","id":"060b080f-32e2-4eb5-a9ed-57efc3335f2e","originalAuthorName":"许正斌"},{"authorName":"刘晓滕","id":"cbf490e7-5f5e-4ac8-81d7-c92cc9a65220","originalAuthorName":"刘晓滕"},{"authorName":"王娟","id":"e1ff2ab1-d7fd-40c1-af6c-769bd7822b88","originalAuthorName":"王娟"},{"authorName":"徐闯","id":"f00e076a-68e0-41d3-8ca2-928dfcdb0e75","originalAuthorName":"徐闯"},{"authorName":"郝海","id":"65e6b9e8-3d8d-4f19-a258-79a9222b11c4","originalAuthorName":"郝海"}],"doi":"","fpage":"2169","id":"e2ef8af5-8229-4e3b-9f90-f15542ed5424","issue":"8","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1e62aa68-f0eb-4b90-ac43-8f245d4120ca","keyword":"泡沫镁","originalKeyword":"泡沫镁"},{"id":"f3961c3c-6d83-42b6-88b1-a393937f543e","keyword":"结构表征","originalKeyword":"结构表征"},{"id":"6f187dac-9af1-4de5-8403-1b63e14b0af1","keyword":"压缩性能","originalKeyword":"压缩性能"},{"id":"4fa6da6c-62fd-44af-9dc0-25797acda77a","keyword":"能量吸收","originalKeyword":"能量吸收"},{"id":"62558663-d9a2-4c01-a1bf-ac907112be1e","keyword":"破坏机理","originalKeyword":"破坏机理"}],"language":"zh","publisherId":"xyjsclygc201608046","title":"泡沫镁的宏微观结构表征及压缩性能","volume":"45","year":"2016"},{"abstractinfo":"针对氯化铵水溶液定向凝固实验,从枝晶微尺度到宏观尺度耦合模拟了相变热质传递过程,并考察了双扩散流的影响.研究结果表明,NH4CI-H2O溶液的枝晶微界面浓度变化与非平衡态的谢尔方程趋于一致.两相区内液相率较高,易于流动的产生;热浮升力形成逆时针回流,溶质浮升力形成顺时针回流;热浮升力作用大于溶质浮升力.但双扩散流几乎不影响凝固沿着结晶室高度方向进行的一维定向特性.数值模拟中低估了两相区的渗透率,是造成两相区厚度模拟结果小于实验值的原因.","authors":[{"authorName":"冯妍卉","id":"27c001db-ba85-432e-9259-94d5c1b2a44c","originalAuthorName":"冯妍卉"},{"authorName":"聂红","id":"b8894368-1b25-4334-9b68-3d3c077c0594","originalAuthorName":"聂红"},{"authorName":"张欣欣","id":"6848e58c-0e75-4914-939a-f23ea937135f","originalAuthorName":"张欣欣"}],"doi":"","fpage":"301","id":"aa6e0355-fdc4-463c-8695-0c9b087c7e50","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9cd90d6d-c91d-49b6-a27f-88bd7d34e6eb","keyword":"定向凝固","originalKeyword":"定向凝固"},{"id":"c47ee741-957f-4918-a8ef-6b8430391db2","keyword":"宏微观","originalKeyword":"宏微观"},{"id":"a9f4b755-f931-488f-aaae-ab00a43bf0c6","keyword":"相变","originalKeyword":"相变"},{"id":"9e00b830-8794-49a7-ad38-8388bc325e84","keyword":"传热传质","originalKeyword":"传热传质"},{"id":"c9a25d81-b615-46dc-a33d-e8c8a0eaa365","keyword":"双扩散流","originalKeyword":"双扩散流"}],"language":"zh","publisherId":"gcrwlxb200802032","title":"定向凝固宏微观热质传递及双扩散流作用","volume":"29","year":"2008"},{"abstractinfo":"提出了一种改进的实验与数值混合法.该方法采用随机短纤维增强复合材料的紧凑拉伸实验,首先得到材料的宏观内聚力模型,进而确定该材料纤维基体界面微观内聚力模型参数.通过有限元法和基于场投影的反解法得到了宏观内聚力模型结果,对比分析这两个方法的结果,得出该反解法对误差的容忍度较低.随后采用改进的反解法,用数字图像相关法(DIC)直接获取宏观内聚力模型分离量,减少了该反解法未知数的数量,提高了容错率.再将DIC和改进的反解法结合,对该材料裂纹尖端宏观内聚力区的牵引力进行了反解.采用双线性内聚力模型,根据Mori-Tanaka方法,将求得的宏观内聚力定律与纤维基体界面微观内聚力定律关联起来,从而求得了纤维基体界面微观内聚力模型参数.该方法和结果可为短纤维增强复合材料纤维基体界面的微观力学分析提供实验基础.","authors":[{"authorName":"沈珉","id":"5f10648d-a44c-4abc-b15a-22d17b2bfb05","originalAuthorName":"沈珉"},{"authorName":"张晓旭","id":"29e21ca1-a597-4d75-88a3-00f009e23ef3","originalAuthorName":"张晓旭"},{"authorName":"孙晓翔","id":"d1d5faa6-7b87-4819-967e-be64f14f9ef0","originalAuthorName":"孙晓翔"}],"doi":"10.13801/j.cnki.fhclxb.20140609.002","fpage":"204","id":"c23f0f72-06a4-4f8d-b72d-feb0651a25d0","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a2dc772d-53e1-44e7-ac0b-19d79d9ae29a","keyword":"植物短纤维复合材料","originalKeyword":"植物短纤维复合材料"},{"id":"7d757b85-3c8b-47c1-9873-8b6d0086d1f3","keyword":"内聚力模型","originalKeyword":"内聚力模型"},{"id":"2a3441c3-71ee-46e4-a11d-78f3d3d3e727","keyword":"基于场投影的反解法","originalKeyword":"基于场投影的反解法"},{"id":"a8445472-0c8d-42d1-ae6c-62ba6c3f40d1","keyword":"数字图像相关法","originalKeyword":"数字图像相关法"},{"id":"2e6d18ac-5016-431e-bd60-c8d72e5d4358","keyword":"Mori-Tanaka方法","originalKeyword":"Mori-Tanaka方法"},{"id":"d3e4a673-e90f-45c8-b6d0-e9f5206bd1aa","keyword":"纤维基体界面","originalKeyword":"纤维基体界面"}],"language":"zh","publisherId":"fhclxb201501027","title":"短纤维复合材料宏微观内聚力模型参数测量的实验与数值混合法","volume":"32","year":"2015"},{"abstractinfo":"微观力学强度理论(MMF)是一种新型的基于物理失效模式的复合材料强度理论.通过对碳纤维/树脂(UTS50/E51)复合材料单向层合板进行纵向、横向静载拉伸、压缩和弯曲试验,得到层合板的基本力学性能和宏观强度指标.建立了碳纤维增强树脂基复合材料微观力学模型,获取树脂基体和纤维不同位置的机械载荷应力放大系数和热载荷应力放大系数.结合获取的应力放大系数及试验测得的单向层合板宏观强度,计算出层合板组分的MMF强度特征值.绘制了基于MMF强度理论的层合板破坏包络线,并与Tsai-Wu失效准则预测结果进行对比.实现了对UTS50/E51层合板MMF强度特征值的表征.","authors":[{"authorName":"李望南","id":"e772b03c-c57c-4ff8-b065-9ab3056b61a4","originalAuthorName":"李望南"},{"authorName":"蔡洪能","id":"61669158-1cae-4fdb-a384-f7371eacb256","originalAuthorName":"蔡洪能"},{"authorName":"郑杰","id":"8c7e9798-f8ef-445a-a1a8-58d8b379e220","originalAuthorName":"郑杰"}],"doi":"","fpage":"244","id":"f20dfefe-576b-4df7-afe8-ab7505e5b0e3","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5dff3cdf-4182-4839-b282-f69141bc57df","keyword":"微观力学强度理论","originalKeyword":"微观力学强度理论"},{"id":"e19ee564-b284-4cd8-9d97-b3bb850eea4d","keyword":"失效分析","originalKeyword":"失效分析"},{"id":"b790ce0f-136e-437a-8ac8-33b2660775db","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"d773fb94-2173-49a0-8635-125efd68fdae","keyword":"强度特征值","originalKeyword":"强度特征值"},{"id":"535e5013-5164-4bc6-9ff0-a87c93b78e23","keyword":"强度表征","originalKeyword":"强度表征"}],"language":"zh","publisherId":"fhclxb201301035","title":"基于宏微观分析的碳纤维增强高分子复合材料强度性能表征","volume":"30","year":"2013"}],"totalpage":3323,"totalrecord":33224}