{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了绝缘电阻大于1013Ω和温度起伏小于0.1℃的半绝缘砷化镓Hall测量装置.研究了环境温度、湿度、漏电流、数据读取时间、测量电压、样品尺寸等因素对电阻率与迁移率的影响,并讨论了各种因素所引起的测量误差.","authors":[{"authorName":"李成基","id":"124403fd-05e6-478d-a8af-238a66bae6f4","originalAuthorName":"李成基"},{"authorName":"李韫言","id":"24b7b745-c389-4639-8df1-53be961a8a73","originalAuthorName":"李韫言"},{"authorName":"王万年","id":"89260d0d-70de-434e-a8fa-7045fc172eb4","originalAuthorName":"王万年"},{"authorName":"何宏家","id":"da18c74a-9f47-489d-ac41-58499069e15a","originalAuthorName":"何宏家"}],"doi":"10.3969/j.issn.1007-4252.2000.04.006","fpage":"325","id":"0d95f114-0c9e-47a2-a8be-b5663db7e59a","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"fb2c28db-1fa3-4ad6-a13f-51ac8eb43af5","keyword":"半绝缘砷化镓","originalKeyword":"半绝缘砷化镓"},{"id":"017f39fd-76cf-4eeb-92aa-304b87ccb580","keyword":"Hall测量","originalKeyword":"Hall测量"},{"id":"1f6c538d-7250-4d11-ac12-4b304ff6694a","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"0a4e115b-1c00-4cac-a942-9053ed5f695b","keyword":"迁移率","originalKeyword":"迁移率"}],"language":"zh","publisherId":"gnclyqjxb200004006","title":"半绝缘砷化镓Hall测量中的若干问题","volume":"6","year":"2000"},{"abstractinfo":"利用金相显微镜和微区红外测量技术分析热处理对液封直拉法生长的大直径半绝缘砷化镓(LECSI-GaAs)单晶中深施主缺陷EL2的影响。结果表明,原生大直径SI—GaAs样品中EL2缺陷浓度沿直径方向的分布呈现中心区域较高、近中心区域最低、边缘区域最高的特点。500℃退火EL2缺陷浓度稳定,真空闭管并快速冷却条件下850℃以上退火时,EL2缺陷浓度随温度升高而下降。并分析了热处理对EL2缺陷的影响机理。","authors":[{"authorName":"王丽华","id":"55543bfa-ee76-4828-9720-22ab2683c758","originalAuthorName":"王丽华"},{"authorName":"郝秋艳","id":"87a889a0-aa0f-4da0-9774-7f4d8f1a1b05","originalAuthorName":"郝秋艳"},{"authorName":"解新建","id":"7a475a6f-8426-4f95-bb4e-d468aa4cdafb","originalAuthorName":"解新建"},{"authorName":"刘红艳","id":"79ea63bc-b55b-4786-a94f-30b9f616c317","originalAuthorName":"刘红艳"},{"authorName":"刘彩池","id":"12a3fc93-001f-4d01-84e9-1ad3b6c4ec17","originalAuthorName":"刘彩池"}],"doi":"","fpage":"9","id":"06599fa1-8ae3-4c1f-812a-71dafd57fe56","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"3d3057f1-ca10-4cd4-82b1-b0aa8ed825fb","keyword":"半绝缘砷化镓","originalKeyword":"半绝缘砷化镓"},{"id":"09ad4280-2c4b-4006-9b5c-22cb4f78665e","keyword":"热处理","originalKeyword":"热处理"},{"id":"b9911cff-afbf-4be6-9f75-9358ea6a45ce","keyword":"EL2缺陷","originalKeyword":"EL2缺陷"},{"id":"95287deb-1a35-4d41-92b4-f749a32650dc","keyword":"微区红外测量技术","originalKeyword":"微区红外测量技术"}],"language":"zh","publisherId":"jsrclxb201207003","title":"热处理对大直径半绝缘砷化镓中EL2缺陷的影响","volume":"33","year":"2012"},{"abstractinfo":"在 950℃和 1120℃温度下,对非掺杂(ND)半绝缘(SI)液封直拉(LEC) GaAs 单晶进行了不同砷气压条件的热处理,研究了热处理对本征缺陷和电特性的影响.在 950℃和低砷压条件下进行 14 h 热处理,可在样品中引入本征受主缺陷并导致体霍尔迁移率大幅度下降和体电阻率明显增加.这些受主缺陷的产生是由于高温和低砷压条件下 GaAs 晶体中发生砷间隙原子的外扩散.提高热处理过程中的砷气压,可以抑制这些受主缺陷的产生和电参数的变化.真空条件下,在 1120℃热处理 2~8 h 并快速冷却后,可使样品中的主要施主缺陷 EL2 浓度下降近一个数量级,提高热处理过程中的砷气压,可以抑制 EL2 浓度下降,这种抑制作用是由于高温、高砷压条件下 GaAs 晶体发生了砷间隙原子的内扩散.","authors":[{"authorName":"杨瑞霞","id":"598ae94e-42ba-4490-976f-86a6b0a61d61","originalAuthorName":"杨瑞霞"},{"authorName":"张富强","id":"57b7317b-a27f-4c5f-bb21-9373a2869f1b","originalAuthorName":"张富强"},{"authorName":"陈诺夫","id":"dc2bd844-a6d3-467e-9ecb-3e7d9d41de77","originalAuthorName":"陈诺夫"}],"doi":"10.3969/j.issn.0258-7076.2001.06.007","fpage":"427","id":"878d5fee-6085-4b30-a984-ac34f8972dfd","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"512441b3-4e8e-4746-a8d2-e82d6707461d","keyword":"半绝缘砷化镓","originalKeyword":"半绝缘砷化镓"},{"id":"97796399-bc90-4b89-89d4-3d2a15ca2931","keyword":"本征受主缺陷","originalKeyword":"本征受主缺陷"},{"id":"1a432115-e76d-4f53-aaed-e56c9161e0f5","keyword":"砷间隙扩散","originalKeyword":"砷间隙扩散"},{"id":"21f2f634-c669-46db-b49e-b1410b9d988e","keyword":"砷压","originalKeyword":"砷压"},{"id":"377c18e7-a5cc-4c94-a157-54a75ce62ed2","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"xyjs200106007","title":"热处理对非掺杂半绝缘 GaAs 本征缺陷和电特性的影响","volume":"25","year":"2001"},{"abstractinfo":"在无光照条件下测量背栅时,部分半绝缘砷化镓材料呈现明显低频振荡.对振荡特性进行了初步研究,并观察了振荡对GaAsMESFET噪声性能的影响.实验结果表明了采用不同低频振荡特性的材料制备器件时,其噪声性能也有差别.","authors":[{"authorName":"张绵","id":"0ecc32ef-ede1-4e25-9a87-4a52eec85ffc","originalAuthorName":"张绵"},{"authorName":"王云生","id":"17ff4880-4cb6-4d7c-957e-67739ed620fa","originalAuthorName":"王云生"},{"authorName":"李岚","id":"e96b164c-afa8-4e11-9fbc-208f91a4ede1","originalAuthorName":"李岚"},{"authorName":"白锡巍","id":"e8c5efbf-907f-4a6f-b4c4-b26268f6f2c9","originalAuthorName":"白锡巍"}],"doi":"10.3969/j.issn.1007-4252.2000.03.017","fpage":"197","id":"9b0f9ee5-6fd4-4de0-882c-9cb4b17de5eb","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"d47bc18b-1c97-4dae-81b1-f5ab404e5d3c","keyword":"半绝缘GaAs","originalKeyword":"半绝缘GaAs"},{"id":"12e51575-6f10-4319-945f-fd82c923c1e9","keyword":"低频振荡","originalKeyword":"低频振荡"},{"id":"e42bfe5a-7905-48aa-99e1-0b02c39e5eca","keyword":"噪声","originalKeyword":"噪声"}],"language":"zh","publisherId":"gnclyqjxb200003017","title":"半绝缘砷化镓中的低频振荡及其对FET噪声性能的影响","volume":"6","year":"2000"},{"abstractinfo":"砷化镓(GaAs)为第二代半导体材料,GaAs衬底质量直接影响器件性能.利用JEM-2002透射电子显微镜(TEM)及其主要附件X射线能量散射谱仪(EDXA),对半绝缘砷化镓(SI-GaAs)单晶中微缺陷进行了研究.发现SI-GaAs单晶中的微缺陷包含有富镓沉淀、富砷沉淀、砷沉淀、 GaAs多晶颗粒和小位错回线等.还分析了微缺陷的形成机制.","authors":[{"authorName":"王海云","id":"72ea6ab5-793e-45f1-b1d7-8018869de2a2","originalAuthorName":"王海云"},{"authorName":"张春玲","id":"6c6e7b32-1a0e-41c0-bbfc-ff51c376ce26","originalAuthorName":"张春玲"},{"authorName":"唐蕾","id":"b1941c56-6003-4fde-8b84-9b9aa8826378","originalAuthorName":"唐蕾"},{"authorName":"刘彩池","id":"6167a448-a7d2-4bff-81ca-d11dc23867f3","originalAuthorName":"刘彩池"},{"authorName":"申玉田","id":"82036d28-a2ef-4408-ac68-bd6c12a4e7ea","originalAuthorName":"申玉田"},{"authorName":"徐岳生","id":"9252835b-0424-44ea-9e1a-687b27a7ff74","originalAuthorName":"徐岳生"},{"authorName":"覃道志","id":"715fd02e-3f91-4ecf-b780-ed0980b7da3c","originalAuthorName":"覃道志"}],"doi":"10.3969/j.issn.0258-7076.2004.03.027","fpage":"547","id":"86ee2edf-3e8b-44fd-b823-c1173e27c6bb","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"df5cb978-3c3e-4668-88f6-8e385d1d69c8","keyword":"SI-GaAs","originalKeyword":"SI-GaAs"},{"id":"a7a51c19-ac88-4df8-8136-95f39d9545c2","keyword":"微缺陷","originalKeyword":"微缺陷"},{"id":"a7a33536-d938-44ba-8ba2-6789c47d1ebb","keyword":"小位错回线","originalKeyword":"小位错回线"},{"id":"f4738f59-f280-4cea-ab45-7abfc334d4e3","keyword":"沉淀成核中心","originalKeyword":"沉淀成核中心"}],"language":"zh","publisherId":"xyjs200403027","title":"半绝缘砷化镓(SI-GaAs)单晶中的微缺陷的研究","volume":"28","year":"2004"},{"abstractinfo":"通过化学腐蚀(AB腐蚀液)、金相显微镜观察、透射电镜(TEM)及能谱分析(EDX),对LEC法生产的半绝缘砷化镓( SI-GaAs)单晶中碳的微区分布进行了分析.其结果表明: 碳的微区分布与晶片中位错密度及分布存在对应关系.高密度位错区位错形成胞状结构,该结构的胞壁区碳含量高,近胞壁区次之,剥光区碳含量低于检测限.","authors":[{"authorName":"徐岳生","id":"a87761cf-2414-4d6c-b79b-b939c7c14535","originalAuthorName":"徐岳生"},{"authorName":"杨新荣","id":"7fdc24b8-de9c-47c1-8536-113f8130be52","originalAuthorName":"杨新荣"},{"authorName":"郭华锋","id":"f6d70444-0c37-4d05-9d27-4feb4d215684","originalAuthorName":"郭华锋"},{"authorName":"唐蕾","id":"8654c96d-2d3e-46fa-b788-843e4f3c8e6e","originalAuthorName":"唐蕾"},{"authorName":"刘彩池","id":"0aeadc2f-438e-477e-aaa6-1a31bdd7e5dc","originalAuthorName":"刘彩池"},{"authorName":"王海云","id":"dddcd73b-3312-4fae-a493-832e11621301","originalAuthorName":"王海云"},{"authorName":"魏欣","id":"4768f2c7-8034-4e4e-9deb-7928b875b9cf","originalAuthorName":"魏欣"}],"doi":"10.3969/j.issn.0258-7076.2004.03.026","fpage":"544","id":"6ca834ef-329e-4a63-a457-bd5b9465c2b2","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"baaeb719-f30d-4e14-8ac3-77878aed137e","keyword":"SI-GaAs","originalKeyword":"SI-GaAs"},{"id":"d8034c14-bb20-421b-83dd-e75a2243e29b","keyword":"位错","originalKeyword":"位错"},{"id":"d9a952be-bc9b-4dd4-b533-89a0c9d8d842","keyword":"碳含量","originalKeyword":"碳含量"},{"id":"d66fa7e7-dd1c-4eaf-9f94-70fd064a64bf","keyword":"能谱分析","originalKeyword":"能谱分析"}],"language":"zh","publisherId":"xyjs200403026","title":"半绝缘砷化镓晶片中碳的微区分布","volume":"28","year":"2004"},{"abstractinfo":"用化学腐蚀法、金相显微观察、透射电镜(TEM)、电子探针X射线微区分析(EPMA)和扫描电镜能谱分析(EDX)等手段,对φ76 mm非掺杂(ND)半绝缘砷化镓(SI-GaAs)单晶中微缺陷、碳的微区分布进行了分析.结果表明:在晶体周边区域,由高密度位错运动和反应形成胞状结构,该胞状结构的本质就是晶体结晶时形成的小角度晶界,且位错与微缺陷有强烈的相互作用:杂质碳在胞壁、近胞壁和完整区的含量依次降低,存在条纹分布.","authors":[{"authorName":"孙卫忠","id":"766dc876-9306-4d54-b2e9-8151845bda27","originalAuthorName":"孙卫忠"},{"authorName":"牛新环","id":"a08898bc-5408-4d98-a9de-ed92ccff9dd1","originalAuthorName":"牛新环"},{"authorName":"王海云","id":"80010918-c808-46fa-893c-19915b8f5984","originalAuthorName":"王海云"},{"authorName":"刘彩池","id":"6b54c1c3-5c8a-4cf8-aaa7-fb34bf471ab9","originalAuthorName":"刘彩池"},{"authorName":"徐岳生","id":"2f8e8161-410d-483c-b7de-dd6e2c43bf29","originalAuthorName":"徐岳生"}],"doi":"","fpage":"1544","id":"c23a674b-fda7-48c7-9863-c292502fc324","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"594b42bc-858e-4f3f-9103-a04c1923a8c6","keyword":"SI-GaAs","originalKeyword":"SI-GaAs"},{"id":"22cbad5d-6f26-4b05-a446-12cd6562e7ad","keyword":"微缺陷","originalKeyword":"微缺陷"},{"id":"15dd7ff8-57b3-4222-abff-58332e201f9a","keyword":"位错","originalKeyword":"位错"},{"id":"d4854360-86b6-4617-b2b7-238f7dc54c91","keyword":"AB腐蚀","originalKeyword":"AB腐蚀"},{"id":"faf31db6-9d16-4019-8b29-22ad20f52657","keyword":"杂质碳","originalKeyword":"杂质碳"}],"language":"zh","publisherId":"xyjsclygc200610008","title":"非掺半绝缘砷化镓中的杂质与微缺陷","volume":"35","year":"2006"},{"abstractinfo":"","authors":[{"authorName":"","id":"f9faf701-101b-4ef7-a1d4-9254c7c56f80","originalAuthorName":""},{"authorName":"","id":"bc1fb501-b7f3-4814-b649-cf918bdb8af5","originalAuthorName":""},{"authorName":"","id":"09995284-dd65-452f-9c61-2c9cce8d0f2f","originalAuthorName":""},{"authorName":"","id":"eccf1ab2-805f-4d99-96f7-6bbd48b3b254","originalAuthorName":""},{"authorName":"","id":"da79cde0-a109-4189-8b41-f38831888987","originalAuthorName":""},{"authorName":"","id":"7c5eb56c-a101-4c2f-97d2-409fee3a2e7f","originalAuthorName":""}],"doi":"","fpage":"132","id":"fc636ddb-b5e7-4d0d-b3bc-bebaeef5e81b","issue":"2","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"a9ac7159-92f9-4ef8-b906-b12238ab4089","keyword":"MOCVD生长","originalKeyword":"MOCVD生长"},{"id":"b5c9dce7-011f-48ba-8d72-343257fdf1b7","keyword":"GaAs衬底","originalKeyword":"GaAs衬底"},{"id":"bae0eac1-d234-4ad1-847b-23e4edad07d8","keyword":"失配位错","originalKeyword":"失配位错"},{"id":"e3ac4865-059b-4752-95f2-19496279675e","keyword":"锑化镓","originalKeyword":"锑化镓"},{"id":"ac14a832-3f16-4cdc-9433-7870b95d207b","keyword":"阵列","originalKeyword":"阵列"},{"id":"fe9beb58-1ebd-47e1-a5cf-2f43afdf7bfd","keyword":"国际货币基金组织","originalKeyword":"国际货币基金组织"},{"id":"8170b820-1474-4dda-9d37-0d0de8926565","keyword":"半绝缘砷化镓","originalKeyword":"半绝缘砷化镓"},{"id":"d5f0f187-291d-4978-bbe7-6179feadf565","keyword":"化学气相沉积法","originalKeyword":"化学气相沉积法"}],"language":"zh","publisherId":"clkxjsxb-e201202006","title":"High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array","volume":"28","year":"2012"},{"abstractinfo":"论述了砷化镓晶体的等效微重力生长的原理和所采用的方法,并讨论了主要结果.","authors":[{"authorName":"徐岳生","id":"2693d257-d456-4b54-b0be-d9821f11b2da","originalAuthorName":"徐岳生"},{"authorName":"李养贤","id":"325e0e5e-a9ab-44c9-aa63-02335463d6be","originalAuthorName":"李养贤"},{"authorName":"刘彩池","id":"efe71143-bdcd-42c0-bc5a-7a5a2556c0d7","originalAuthorName":"刘彩池"},{"authorName":"王海云","id":"74316659-fbcf-477b-a968-a3ed8990396e","originalAuthorName":"王海云"},{"authorName":"郝秋艳","id":"81cbd007-a8e0-4a84-93ac-3715ef961381","originalAuthorName":"郝秋艳"}],"doi":"10.3969/j.issn.1007-4252.2000.04.002","fpage":"309","id":"6e4c4193-1d40-4720-861d-bd24c418037d","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"2a02593f-f7f4-475a-90cd-16a7081aaecf","keyword":"等效微重力","originalKeyword":"等效微重力"},{"id":"1019fdb7-d848-4813-a90a-419ab3b02dde","keyword":"扩散机理","originalKeyword":"扩散机理"},{"id":"14c94692-be22-4094-a1ff-8bf48e4b00de","keyword":"晶体生长","originalKeyword":"晶体生长"}],"language":"zh","publisherId":"gnclyqjxb200004002","title":"砷化镓单晶的等效微重力生长","volume":"6","year":"2000"},{"abstractinfo":"用X射线光电子能谱分析技术(XPS)研究了几种砷化镓抛光片及经不同表面处理方法处理的砷化镓晶片表面的化学计量比和表面化学组成.结果表明砷化镓抛光片的表面自然氧化层中含有Ga2O3、As2O5、As2O3及元素As;表面化学计量比明显富镓,而经过适当的化学处理后这些表面特性能得到较大改善.","authors":[{"authorName":"任殿胜","id":"51e0967f-bce7-4605-9a34-79c4d46a62cf","originalAuthorName":"任殿胜"},{"authorName":"王为","id":"3b62999e-d3e4-4ae0-9ef2-c50aa446a0b4","originalAuthorName":"王为"},{"authorName":"李雨辰","id":"84773ee8-09b8-48e4-985f-f1070bb266c8","originalAuthorName":"李雨辰"},{"authorName":"严如岳","id":"2dbb7f86-86c0-44aa-8490-9f252efbe903","originalAuthorName":"严如岳"}],"doi":"10.3969/j.issn.1007-2780.2002.04.006","fpage":"270","id":"7763d622-fd26-4b40-8fd2-22dc3a46bd67","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"3e6b3b15-e1f3-43e0-9f5a-c0045438957c","keyword":"砷化镓","originalKeyword":"砷化镓"},{"id":"92450ce8-ab91-40a8-99bf-0ea87a3d9a5b","keyword":"表面","originalKeyword":"表面"},{"id":"927b504b-2b64-42bf-bf19-30b0037838c0","keyword":"XPS","originalKeyword":"XPS"}],"language":"zh","publisherId":"yjyxs200204006","title":"砷化镓晶片表面的XPS研究","volume":"17","year":"2002"}],"totalpage":3029,"totalrecord":30290}