{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"由SnCl4,NaBH4和NaCl、KCl或KCl-NaCl组成的3种微乳液混合发生反应制备SnO2前驱物,在熔盐环境中再经710、760、785和900℃等温度焙烧15min、1h、2h、3h,成功地制备了金红石结构的SnO2纳米,并用透射电子显微镜,X射线衍射对SnO2纳米的结构进行了表征.讨论了焙烧温度、焙烧时间和熔盐对SnO2纳米的影响,用熔盐合成机理对其形成进行了讨论,初步认为是成核、长大过程形成了SnO2纳米.","authors":[{"authorName":"赵鹤云","id":"193f84b8-66da-4f3d-b8e9-02846a144bbe","originalAuthorName":"赵鹤云"},{"authorName":"杨留方","id":"5838065a-de48-494e-a4dc-4de11a51e5a3","originalAuthorName":"杨留方"},{"authorName":"朱文杰","id":"490b3835-3b81-4c7e-a67e-29349396adba","originalAuthorName":"朱文杰"},{"authorName":"柳清菊","id":"a38c27af-6034-4d7a-8f3e-5c9efea895bd","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"09bfbed8-0d6e-4cf4-b1dc-9a389f719f41","originalAuthorName":"吴兴惠"}],"doi":"","fpage":"260","id":"2d96bd41-9f93-4f3d-8df9-138f21b31002","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f39c16f1-e3c6-4d40-a12b-77e18aaf0584","keyword":"纳米SnO2","originalKeyword":"纳米棒SnO2"},{"id":"e8ae3ba5-51e4-43a4-ae09-d111df394ca1","keyword":"熔盐","originalKeyword":"熔盐"},{"id":"df7971a7-5ad4-45d8-8f70-82dcaa050b92","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"5e3730d4-84a9-48df-b89d-5c2986ac773d","keyword":"成核长大","originalKeyword":"成核长大"}],"language":"zh","publisherId":"gncl200502031","title":"SnO2纳米的制备及表征","volume":"36","year":"2005"},{"abstractinfo":"利用室温固相反应方法,合成了SnO2纳米前驱物.在NaCl和KCl等熔盐介质中,在660~785℃对前驱物进行焙烧,纳米颗粒前驱物自组装生长形成金红石结构的SnO2纳米一维材料.利用TEM和XRD对制备的SnO2纳米的形貌、成分进行了表征和分析,SnO2纳米直径为20~80nm,长度从几百纳米到几微米.分析了SnO2纳米颗粒前驱体熔盐介质中的生长,探讨了SnO2纳米颗粒在熔盐介质中的固相生长现象.","authors":[{"authorName":"赵鹤云","id":"b52ded5e-aa37-4214-93f7-e4e1ed2eb6b7","originalAuthorName":"赵鹤云"},{"authorName":"柳清菊","id":"64249824-d66f-48c9-bffd-d6006cab609c","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"3210af3b-0591-420c-8213-4e66e82d918c","originalAuthorName":"吴兴惠"},{"authorName":"赵怀志","id":"4cc9b95c-b0cb-43db-b8ea-fa89e0fd3d80","originalAuthorName":"赵怀志"}],"doi":"","fpage":"76","id":"737f78cc-4169-480e-adab-bfe2020077c6","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4a254350-f464-4bea-865b-a36aa4d824cc","keyword":"SnO2纳米","originalKeyword":"SnO2纳米棒"},{"id":"1e3d72a6-1684-4123-bb1b-79f804ae63b1","keyword":"固相反应","originalKeyword":"固相反应"},{"id":"a73804ed-4cc3-4f74-8c19-78f2c2791a54","keyword":"固相生长","originalKeyword":"固相生长"},{"id":"fa58b0d4-0acd-42e7-a7ec-6bcf19d54696","keyword":"熔盐介质","originalKeyword":"熔盐介质"}],"language":"zh","publisherId":"cldb2005z2023","title":"固相反应制备SnO2纳米技术研究","volume":"19","year":"2005"},{"abstractinfo":"利用室温固相反应方法,合成了SnO2纳米颗粒前驱物.在NaCl、KCl等熔盐介质中,在600~785℃对前驱物进行焙烧,前驱物纳米颗粒自组装生长形成SnO2纳米.利用TEM、XRD和XPS对SnO2纳米形貌、成分进行了表征和分析,SnO2纳米直径为20~80 nm,长度从几百纳米到几个微米.研究了SnO2纳米颗粒前驱体熔盐介质中的生长,探讨了SnO2纳米颗粒在熔盐介质中的固相转变生长机理.","authors":[{"authorName":"赵鹤云","id":"cb1d0752-9e85-4664-bdf3-7bee1a20d11c","originalAuthorName":"赵鹤云"},{"authorName":"柳清菊","id":"53dbf27c-177b-4488-b0e0-eda9d9b4cab7","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"91ebbfc8-93f9-42ea-b970-e5d4b1459f11","originalAuthorName":"吴兴惠"},{"authorName":"赵怀志","id":"c4d2cb63-962f-4147-96e8-89c90d8deab3","originalAuthorName":"赵怀志"}],"doi":"10.3969/j.issn.1007-4252.2006.01.003","fpage":"10","id":"25925c20-e2f4-4a0c-bbfb-74c7bd805bb2","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"7165296c-d564-43ae-ae88-1d323d9a8442","keyword":"固相反应","originalKeyword":"固相反应"},{"id":"e9ed6885-dc81-40bf-8223-e8aa91a5e795","keyword":"SnO2纳米","originalKeyword":"SnO2纳米棒"},{"id":"0ac9fd85-62b9-4fd3-80d9-ed0124309f96","keyword":"熔盐介质","originalKeyword":"熔盐介质"}],"language":"zh","publisherId":"gnclyqjxb200601003","title":"SnO2纳米的固相反应制备与表征","volume":"12","year":"2006"},{"abstractinfo":"在聚氧乙烯五醚(NP5)、聚氧乙烯九醚(NP9)和环己烷组成的微乳体系中用氧化还原法制备SnO2前驱物,然后在熔盐中再经800℃、860℃焙烧2.5h,成功地制备了金红石结构的SnO2纳米,并用透射电子显微镜,X射线衍射对SnO2纳米的结构进行了表征.","authors":[{"authorName":"赵鹤云","id":"35c7ab71-cd77-4b40-85bb-c87602a82d11","originalAuthorName":"赵鹤云"},{"authorName":"杨留方","id":"b33eceeb-52e9-447a-b3c5-65540c2f3818","originalAuthorName":"杨留方"},{"authorName":"朱文杰","id":"3815c689-1f97-4ca4-9747-229cae98fae9","originalAuthorName":"朱文杰"},{"authorName":"柳清菊","id":"d1f94e39-7db8-4d5a-84b7-65e016494085","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"cfc9709c-2dbe-46e7-90f2-e9c02d17a1b8","originalAuthorName":"吴兴惠"}],"doi":"","fpage":"96","id":"e8487b64-5f1e-4f13-8384-7339f4bbbd73","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c2c6160d-cc83-4f5a-996b-ced4e36fdacd","keyword":"氧化还原","originalKeyword":"氧化还原"},{"id":"4c4a662c-fbcf-4977-87d4-ba1fdf610133","keyword":"纳米","originalKeyword":"纳米棒"},{"id":"c6dd3ea3-8cca-4fe1-bba0-66e88832e8ff","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"676b0617-22d4-4e79-a488-e8bada538cb2","keyword":"熔盐","originalKeyword":"熔盐"}],"language":"zh","publisherId":"cldb200404028","title":"氧化还原法制备SnO2纳米的研究","volume":"18","year":"2004"},{"abstractinfo":"室温条件下通过固相反应合成了SnO2纳米颗粒前驱物.在600~780℃对前驱物进行焙烧,在NaCl、KCl和KCl+NaCl的熔盐介质中SnO2前驱物纳米颗粒自组装生长形成SnO2 纳米.利用TEM、XRD和XPS对SnO2纳米结构、形貌和成分进行了研究.结果表明SnO2纳米直径为20~80nm,长度从几百纳米到十几微米.分析了SnO2 纳米颗粒前驱体熔盐介质中的生长,利用固相转变生长可以解释SnO2纳米在熔盐介质中的生长机制.","authors":[{"authorName":"赵鹤云","id":"7c6e700c-7941-4ec2-826e-6336dd4b15d8","originalAuthorName":"赵鹤云"},{"authorName":"柳清菊","id":"9bca430d-f47d-4258-a872-959a99caa3c3","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"a98d3e12-c22a-4dad-8428-6750958f1da9","originalAuthorName":"吴兴惠"},{"authorName":"赵怀志","id":"eb1a42da-6b20-4d8d-9aa5-4e30bd5cf6c9","originalAuthorName":"赵怀志"}],"doi":"","fpage":"1634","id":"16304d42-615a-4591-8be5-e4a028dbfcdd","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"48fa8d67-dc21-4869-9a6b-03e8e7ebec64","keyword":"固相反应","originalKeyword":"固相反应"},{"id":"9b1736ad-694f-47ee-837f-b9ba5d956888","keyword":"SnO2 纳米","originalKeyword":"SnO2 纳米棒"},{"id":"fef865a1-2934-44e5-bd7e-782510c6c445","keyword":"熔盐介质","originalKeyword":"熔盐介质"},{"id":"456bca19-c728-43dc-ab78-99873f4d4f25","keyword":"固相转变","originalKeyword":"固相转变"}],"language":"zh","publisherId":"gncl200510046","title":"焙烧室温条件固相反应制备前驱物合成SnO2纳米的研究","volume":"36","year":"2005"},{"abstractinfo":"采用溶剂热法制备了SnO2纳米载体,用溶剂热还原法制备了Pd/SnO2催化剂和不同Pd/Sb原子数比的系列PdSb/SnO2复合催化剂.用XRD、SEM、TEM、EDS等手段对样品进行分析表征,并以循环伏安法对比评价催化剂对甲酸的电催化氧化性能.表征结果表明,制备所得SnO2纳米载体为针状,大小均匀,平均直径为100 nm;负载所得催化剂中活性粒子大小约为13.5 nm,掺杂Sb后,粒径约为9.5 nm.电催化氧化性能对比结果表明,Pd/Sb原子数比为4:1的Pd4Sb/SnO2复合催化剂对甲酸的氧化具有较好的催化能力,当E=0.25 V(vs SCE)时,Pd4Sb/SnO2上甲酸氧化的峰电流密度达到25 mA/cm2,远远高于Pd/SnO2催化剂.","authors":[{"authorName":"何乌日嘎木拉","id":"0dc12825-1601-48cf-8bc7-93add8ebab18","originalAuthorName":"何乌日嘎木拉"},{"authorName":"李宏霞","id":"b5493aea-3ea6-4796-9b95-4e4caa2d7829","originalAuthorName":"李宏霞"},{"authorName":"石乐乐","id":"6e99fed2-b70b-4521-aaae-f2d1ecac0afd","originalAuthorName":"石乐乐"},{"authorName":"陆航","id":"0caf900b-ce86-427e-a52f-0378414b7b80","originalAuthorName":"陆航"},{"authorName":"张益佳","id":"f72e22fa-71be-4340-b4b5-cdf0267b6f1e","originalAuthorName":"张益佳"},{"authorName":"孙丽美","id":"3ba3a5b9-d0d1-44a0-a87e-e2a0337eb08a","originalAuthorName":"孙丽美"}],"doi":"","fpage":"1","id":"a527b9be-7fa0-4516-822e-29e27d2e2c83","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"8edbf594-6f7d-40d8-b35d-9405b1beb409","keyword":"催化化学","originalKeyword":"催化化学"},{"id":"57bd9807-123b-4a3a-9e8f-93797e79a6bd","keyword":"直接甲酸燃料电池","originalKeyword":"直接甲酸燃料电池"},{"id":"8e23301a-39b5-4481-91bc-3aa837d2b140","keyword":"SnO2纳米","originalKeyword":"SnO2纳米棒"},{"id":"87711d94-b005-4803-8670-330369346c6a","keyword":"钯","originalKeyword":"钯"},{"id":"76d58f6d-a079-4141-b5d7-cd63ee63a6cf","keyword":"锑","originalKeyword":"锑"}],"language":"zh","publisherId":"gjs201701001","title":"SnO2纳米负载Pd-Sb催化甲酸电氧化","volume":"38","year":"2017"},{"abstractinfo":"在聚氧乙烯五醚(NP5),聚氧乙烯九醚(NP9),乳化剂(OP)和环己烷组成的微乳体系中制备二氧化锡前驱物.然后再经800~820℃焙烧2.5h,成功地制备了直径为30~90nm,长5~10μm的金红石结构的二氧化锡纳米,并用透射电子显微镜,电子衍射,X射线衍射对二氧化锡纳米的结构进行了表征.用熔盐合成机理对其形成进行了讨论,初步认为是成核、长大过程形成了二氧化锡纳米.","authors":[{"authorName":"侯德东","id":"98cbb1ac-fd54-4ca4-8442-422deae1dbdc","originalAuthorName":"侯德东"},{"authorName":"刘应开","id":"9c42326a-6dd8-499e-92d8-6166e1e55da9","originalAuthorName":"刘应开"}],"categoryName":"|","doi":"","fpage":"691","id":"cb2a1b41-b973-46c6-b09f-896b4cbc5803","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7b49048f-8a4e-4abe-9891-884ede327b28","keyword":"SnO2纳米","originalKeyword":"SnO2纳米棒"},{"id":"983af591-7dda-40d3-b4bd-643198cb369f","keyword":" microemulsion","originalKeyword":" microemulsion"},{"id":"5f990b2b-cc20-4055-b412-71eb771d85a0","keyword":" molten salt synthesis method","originalKeyword":" molten salt synthesis method"},{"id":"c2926f10-2b6c-4d15-bd02-60dfe1f7919f","keyword":" nucleation and growth process","originalKeyword":" nucleation and growth process"}],"language":"zh","publisherId":"1000-324X_2002_4_14","title":"SnO2纳米的制备及表征","volume":"17","year":"2002"},{"abstractinfo":"在聚氧乙烯五醚(NP5),聚氧乙烯九醚(NP9),乳化剂(OP)和环己烷组成的微乳体系中制备二氧化锡前驱物.然后再经800~820°C焙烧2.5h,成功地制备了直径为30~90nm,长5~10μm的金红石结构的二氧化锡纳米,并用透射电子显微镜,电子衍射,X射线衍射对二氧化锡纳米的结构进行了表征.用熔盐合成机理对其形成进行了讨论,初步认为是成核、长大过程形成了二氧化锡纳米.","authors":[{"authorName":"侯德东","id":"2d79195b-3ce3-478b-9101-af2461d00934","originalAuthorName":"侯德东"},{"authorName":"刘应开","id":"32a7f6b5-9be3-4510-9ecb-713b90817303","originalAuthorName":"刘应开"}],"doi":"10.3321/j.issn:1000-324X.2002.04.008","fpage":"691","id":"6bb106e3-b8be-4670-b388-f83b7fe3fc61","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"388c65fb-8b9a-4a8a-814c-3a656337fb16","keyword":"SnO2纳米","originalKeyword":"SnO2纳米棒"},{"id":"a4d9a6e9-61a3-417b-8902-adaed9a3123c","keyword":"微乳","originalKeyword":"微乳"},{"id":"eddbb734-a372-4d1f-b1f6-24b6d00ce404","keyword":"熔盐合成","originalKeyword":"熔盐合成"},{"id":"449d1ed9-0b53-4060-a67c-d28e7e449c46","keyword":"成核、长大过程","originalKeyword":"成核、长大过程"}],"language":"zh","publisherId":"wjclxb200204008","title":"SnO2纳米的制备及表征","volume":"17","year":"2002"},{"abstractinfo":"以CoCl2·6H2O和CO(NH2)2为原料采用水热法合成多孔Co3O4纳米,之后通过自组装的方法将SnO2纳米晶修饰到多孔Co3O4纳米上.研究了SnO2纳米晶修饰对多孔Co3O4纳米气敏性能的影响.气敏测试结果表明SnO2纳米晶的修饰明显增强了多孔Co3O4纳米对CH3CH2H和H2S的响应,对CH3CH2OH和H2S的检出下限分别达到5.0×10-6和1.0×10-6.","authors":[{"authorName":"潘兰英","id":"1625ac43-46a6-455c-803f-a714ace08596","originalAuthorName":"潘兰英"},{"authorName":"胡平","id":"ac226149-dcc7-4b10-99c2-7d2e61ffdd83","originalAuthorName":"胡平"},{"authorName":"赵宏滨","id":"2246ca69-0d81-4c2f-905c-56f24b32a7dd","originalAuthorName":"赵宏滨"},{"authorName":"董晓雯","id":"d60b0655-a938-4d0d-b004-e1c8d262a4b8","originalAuthorName":"董晓雯"},{"authorName":"徐甲强","id":"3a4c07e8-e1d2-45f2-8cc3-6c1844f32909","originalAuthorName":"徐甲强"}],"doi":"10.3969/j.issn.1001-9731.2013.12.009","fpage":"1713","id":"7fd594f7-2af3-4f6c-a88e-83c3c5f76ecf","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f24cff48-2fbf-4f4c-bdc0-6f92e1ba254b","keyword":"多孔Co3O4纳米","originalKeyword":"多孔Co3O4纳米棒"},{"id":"55533750-6591-49d6-86be-d765dbcd1722","keyword":"SnO2纳米晶","originalKeyword":"SnO2纳米晶"},{"id":"65db9592-b27b-4aed-b9e7-9cf642dcded9","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"cbd9839c-9b1f-47cb-bd0e-cacb49f4337f","keyword":"自组装","originalKeyword":"自组装"},{"id":"40c704ce-000f-41ec-9d52-00531a0cd675","keyword":"气体传感器","originalKeyword":"气体传感器"}],"language":"zh","publisherId":"gncl201312009","title":"SnO2纳米晶修饰多孔Co3O4纳米的制备及气敏性能研究","volume":"44","year":"2013"},{"abstractinfo":"分析了纳米SnO2粉体团聚的形成机理,并从物理法和化学法两个方面分析归纳了控制纳米SnO2粉体团聚的方法.最后指出,在实际应用中应结合纳米SnO2粉体的使用形式,考虑其成本和可操作性等问题,综合采用多种方法控制纳米SnO2粉体团聚.","authors":[{"authorName":"韩丽华","id":"65c99b5d-f991-4b1e-af5e-a3be00068547","originalAuthorName":"韩丽华"},{"authorName":"金建新","id":"f273f367-0463-4395-8d3a-aa20d17aca98","originalAuthorName":"金建新"},{"authorName":"宰学荣","id":"8aa3fd20-0298-466e-aa10-eff2c4a676d4","originalAuthorName":"宰学荣"},{"authorName":"杨尚林","id":"0927cd5c-55ee-43af-854d-10525b413ed9","originalAuthorName":"杨尚林"}],"doi":"10.3969/j.issn.1003-1545.2005.06.009","fpage":"30","id":"3dc79750-4f46-4eee-9490-fe55cc0dceae","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"68e561e4-87a6-4cd9-a09a-3bfb15ea0128","keyword":"纳米SnO2","originalKeyword":"纳米SnO2"},{"id":"41859953-681f-42e2-94ff-88e96779443b","keyword":"团聚控制","originalKeyword":"团聚控制"},{"id":"0c59a6c6-717f-409a-b4bb-8e2daec5881f","keyword":"分散剂","originalKeyword":"分散剂"}],"language":"zh","publisherId":"clkfyyy200506009","title":"纳米SnO2粉体团聚的控制","volume":"20","year":"2005"}],"totalpage":9333,"totalrecord":93329}