{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用热蒸发法在硅衬底上合成了二氧化纳米阵列,并研究其场致电子发射特性.研究结果表明,所合成的二氧化纳米是一种新型的纳米结构,可以通过反应时间的不同得到不同密度的二氧化纳米阵列,从而实现可控生长.在研究场致电子发射方面,我们发现所合成的二氧化纳米阵列有优良的场发射性能,开启电场为1.4 V/μm,对应的发射电流密度为10 μA/cm2;当电场强度为7.4 V/μm时,发射电流密度高达2.48 mA/cm2.这是由于二氧化纳米结构有很小的尖端曲率半径以及所测量样品中二氧化纳米阵列分布比较均匀造成的.测量结果发现在F-N曲线上呈现两个线性段,我们认为这是由于在不同的电场下,发射电流由不同高度的形结构引起的,不同高度的形结构由于长径比不同因而具有不同的场增强因子,从而导致在F-N曲线上表现为两个线性段.","authors":[{"authorName":"陈媚媚","id":"87d8eaeb-7de9-493a-b9ce-74edd87dcb34","originalAuthorName":"陈媚媚"},{"authorName":"郑陶雷","id":"0ebff520-83c2-4193-b383-487d75c4ed62","originalAuthorName":"郑陶雷"},{"authorName":"王宗利","id":"fa2b9d86-0376-4578-b387-5e5474f9357f","originalAuthorName":"王宗利"},{"authorName":"李俊杰","id":"a1e56656-db3b-46c5-a31b-7b63dbd0d4dc","originalAuthorName":"李俊杰"},{"authorName":"顾长志","id":"3d8b233b-d9b0-4ae6-84e4-4001dbe77e66","originalAuthorName":"顾长志"}],"doi":"10.3969/j.issn.1007-2780.2007.06.006","fpage":"672","id":"c8a4f105-29bc-453f-9550-6e1c66e1d319","issue":"6","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"af9107ae-8df6-412f-ba37-9f63214a1d29","keyword":"场发射","originalKeyword":"场发射"},{"id":"a45a44be-9ba8-4fe0-9841-155af7a29468","keyword":"二氧化纳米阵列","originalKeyword":"二氧化锡纳米梭阵列"},{"id":"f7ec29d0-78d0-427e-b56d-06982006641c","keyword":"热蒸发","originalKeyword":"热蒸发"}],"language":"zh","publisherId":"yjyxs200706006","title":"二氧化纳米阵列的合成与场发射特性研究","volume":"22","year":"2007"},{"abstractinfo":"单质锡箔片在草酸溶液中利用电化学阳极氧化合成出前聚体, 并将前聚体通过加热氧化制备出具有纳米级孔道的二氧化材料. 电化学氧化制备的氧化纳米孔径和分布随外加电压、电解质溶液浓度和氧化时间而变化. 经场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和孔径分析仪(Poresizer)分析显示, 阳极氧化的前聚体是氧化, 通过在空气中加热转化为二氧化, 在详细研究制备条件和氧化孔道形貌的基础上, 提出了氧化纳米孔的生成机理符合氧化溶解理论模型.","authors":[{"authorName":"韩卫清","id":"328fe4a8-9cbd-43ec-b0d4-0af441d6472d","originalAuthorName":"韩卫清"},{"authorName":"周刚","id":"85e8812b-26a6-460f-85e0-7f2a1ad04c35","originalAuthorName":"周刚"},{"authorName":"王连军","id":"6ca39b10-e248-4014-8f67-6a24e1ef7796","originalAuthorName":"王连军"},{"authorName":"孙秀云","id":"38bb74c3-6fbb-4691-907a-f38ff0462dbc","originalAuthorName":"孙秀云"},{"authorName":"李健生","id":"393514d9-1268-4857-833c-b5c9700393b5","originalAuthorName":"李健生"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00395","fpage":"395","id":"30d755f0-1384-42c0-bdd1-ddaae0fe6acc","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5afddb87-ab87-4ede-87c8-f6fbf25ae5da","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"2735b1ec-6271-4951-bc72-ec31bf87f05b","keyword":"tin dioxide","originalKeyword":"tin dioxide"},{"id":"df6f4e51-a533-4ce7-b0f3-bc6fde21d321","keyword":"nanotube","originalKeyword":"nanotube"}],"language":"zh","publisherId":"1000-324X_2007_3_26","title":"阳极氧化制备二氧化纳米孔","volume":"22","year":"2007"},{"abstractinfo":"单质锡箔片在草酸溶液中利用电化学阳极氧化合成出前聚体,并将前聚体通过加热氧化制备出具有纳米级孔道的二氧化材料.电化学氧化制备的氧化纳米孔径和分布随外加电压、电解质溶液浓度和氧化时间而变化.经场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和孔径分析仪(Poresizer)分析显示,阳极氧化的前聚体是氧化,通过在空气中加热转化为二氧化,在详细研究制备条件和氧化孔道形貌的基础上,提出了氧化纳米孔的生成机理符合氧化溶解理论模型.","authors":[{"authorName":"韩卫清","id":"c328261b-a4c4-40dc-8db9-e96618d91204","originalAuthorName":"韩卫清"},{"authorName":"周刚","id":"18c3dae5-0a1c-4049-8d48-50ab071d6a1f","originalAuthorName":"周刚"},{"authorName":"王连军","id":"ca311fdd-b27e-43e5-8193-1c00d1366d2b","originalAuthorName":"王连军"},{"authorName":"孙秀云","id":"3a3c699b-d41e-40d6-80a6-2611093d379b","originalAuthorName":"孙秀云"},{"authorName":"李健生","id":"0fe5ee67-f8c8-4fa6-9928-7f873ad17045","originalAuthorName":"李健生"}],"doi":"10.3321/j.issn:1000-324X.2007.03.003","fpage":"395","id":"250f0280-88bf-4ee4-9150-b21df6b0b38b","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"8317f727-37a3-458d-be61-8de45b61f0e0","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"ad45d5a6-dc92-4fe4-9717-65721724c28c","keyword":"二氧化","originalKeyword":"二氧化锡"},{"id":"790d635f-0d12-40fd-a61b-58b18e6da400","keyword":"纳米孔","originalKeyword":"纳米孔"}],"language":"zh","publisherId":"wjclxb200703003","title":"阳极氧化制备二氧化纳米孔","volume":"22","year":"2007"},{"abstractinfo":"采用水热合成法制备了纳米二氧化钛溶胶,通过XRD、TEM和FT-Raman对所得溶胶中纳米粒子的晶形、大小及形貌进行了表征,并探讨了该溶胶对大肠杆菌和金黄色葡萄球菌的抗抑性能以及对原代培养的小鼠腹腔巨噬细胞的毒性效应.结果表明,所得溶胶中纳米二氧化钛粒子均为形锐钛型纳米二氧化钛,宽平均为20nm,长平均为100nm.溶胶对大肠杆茵和金黄色葡萄球茵的抑菌率在作用4h后均达到90%以上,抑茵率达到90%以上的溶胶质量浓度为1000mg/L.溶胶加入细胞培养液中后能明显影响巨噬细胞的生长形态,24h后巨噬细胞都呈现出不同程度的回缩变形,细胞间隙增大,巨噬细胞内颗粒物随纳米TiO2颗粒浓度的升高而增多,细胞折光性下降;在24h内对巨噬细胞的生长具有一定的增殖作用,在48h内都呈现一定的抑制作用,且存在剂量-效应关系,随着纳米TiO2浓度的升高,其对巨噬细胞的生长抑制越显著.","authors":[{"authorName":"何娉婷","id":"7197504a-4ca0-464c-8a79-a118db34320f","originalAuthorName":"何娉婷"},{"authorName":"陶杰","id":"6ab006b4-90fc-465c-8161-ea5ad6ade2d6","originalAuthorName":"陶杰"},{"authorName":"薛建军","id":"8935cd89-365a-462c-9f81-61d8905851dc","originalAuthorName":"薛建军"},{"authorName":"陈玉兰","id":"0e01d77b-9420-4cba-8b58-55e0ded9a0f9","originalAuthorName":"陈玉兰"}],"doi":"","fpage":"22","id":"afd6e377-ab02-493d-8598-b7f3391fa8ac","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"02f8619a-ba5e-4485-aa2f-f0b151ea2311","keyword":"纳米二氧化钛溶胶","originalKeyword":"纳米二氧化钛溶胶"},{"id":"3e80e251-bf9c-49ee-a2e6-9e790e413dce","keyword":"抗菌性能","originalKeyword":"抗菌性能"},{"id":"5f9ef760-9970-4358-b73d-2d09d167d930","keyword":"细胞毒性","originalKeyword":"细胞毒性"}],"language":"zh","publisherId":"cldb201108007","title":"纳米二氧化钛溶胶的制备及其抗菌性能和细胞毒性","volume":"25","year":"2011"},{"abstractinfo":"二氧化纳米阵列具有独特的结构、良好的化学惰性、更大的比表面积、纳米管与基底结合牢固等优点,其应用非常广泛.综述了二氧化纳米阵列在太阳能电池、传感器、光解水制氢、光催化和环境分析方面的应用研究进展,并提出了二氧化纳米阵列的应用发展趋势及展望.","authors":[{"authorName":"黄运瑞","id":"5f243496-0417-488d-9808-46e302043c52","originalAuthorName":"黄运瑞"},{"authorName":"周庆祥","id":"a017f4e0-45e3-4a13-94a7-ccdbbf6c183f","originalAuthorName":"周庆祥"},{"authorName":"闫家伟","id":"0519e1e9-4b73-4a66-b8c8-9c6151933af1","originalAuthorName":"闫家伟"}],"doi":"","fpage":"51","id":"09bc5f42-ca8b-4dd8-bcb6-8531694186b5","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a31983a7-6236-4e81-8a67-66e68d24dfcb","keyword":"二氧化纳米阵列","originalKeyword":"二氧化钛纳米管阵列"},{"id":"11f24e3d-6fd5-4daf-a162-e57d5170ec74","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"2aeea5d4-b2cc-42c1-b15b-16d437a48842","keyword":"光催化","originalKeyword":"光催化"},{"id":"a3fa6a48-2914-47a4-9faa-8e113e1aec6d","keyword":"环境分析","originalKeyword":"环境分析"}],"language":"zh","publisherId":"cldb201223011","title":"二氧化纳米阵列的应用研究进展","volume":"26","year":"2012"},{"abstractinfo":"采用阳极氧化法,以NH4 F-乙醇-水溶液为电解质,在钛片上制备了TiO2纳米阵列,并研究了电解电压和电极距离对TiO2多孔薄膜形貌的影响.结果表明,通过优化电解电压,可以调控二氧化纳米阵列的内径在20~145nm之间;通过调节两电极间的间距,在金属钛片上制备了完整的二氧化纳米阵列.并采用有限元模拟二氧化钛层中的电流密度分布,探讨了二氧化纳米阵列纳米阵列的形成.","authors":[{"authorName":"谭志谋","id":"457c1b4e-eaeb-4d2a-9b7f-30810a3cf268","originalAuthorName":"谭志谋"},{"authorName":"王慧洁","id":"e90660cb-c866-4130-8a7f-51cf8c9f96d9","originalAuthorName":"王慧洁"},{"authorName":"杨杭生","id":"202dce03-3a64-48e6-be39-c190069c598d","originalAuthorName":"杨杭生"},{"authorName":"张孝彬","id":"029d6aee-0a35-4def-b59e-4c07f4e44c15","originalAuthorName":"张孝彬"}],"doi":"","fpage":"390","id":"f9b492e1-454a-48af-9bf3-33d8206f539d","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7ee2f7c5-8d00-46d0-8b3a-6592083517a2","keyword":"二氧化纳米阵列","originalKeyword":"二氧化钛纳米管阵列"},{"id":"3712e111-3a22-412f-bd1d-b94b681c18ff","keyword":"二氧化纳米阵列","originalKeyword":"二氧化钛纳米孔阵列"},{"id":"2a7eb8de-3043-4810-bbcf-988ca62e517c","keyword":"阳极氧化法","originalKeyword":"阳极氧化法"},{"id":"99029dc9-d565-43e0-b41f-a8100c934da1","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"f7e79eb4-53ca-41fe-94b6-e9bde5e4c3d1","keyword":"内径","originalKeyword":"内径"}],"language":"zh","publisherId":"clkxygc201303014","title":"阳极氧化法制备二氧化纳米阵列的形貌","volume":"31","year":"2013"},{"abstractinfo":"在由乙醇、水,氟化铵组成的电解液中添加钼酸钠调节阳极附近的离子浓度,制备出厚度大约为10微米的透明二氧化纳米阵列薄膜.所得二氧化钛是无定型结构,在120℃水热处理可以将其转化成锐钛矿结构,并保持薄膜的结构完整性.该薄膜的透射率与其表面结构和晶体结构有关.这种透明二氧化纳米阵列薄膜可望应用于染料敏化太阳能电池.","authors":[{"authorName":"钟启声","id":"e3945cfb-3610-44e2-b6d7-fd4629c73949","originalAuthorName":"钟启声"},{"authorName":"王大伟","id":"e9b8e155-8395-4455-80c8-cf97d668864a","originalAuthorName":"王大伟"},{"authorName":"李峰","id":"ed0b39de-a2a0-4b50-acbf-cddeb6f29b22","originalAuthorName":"李峰"},{"authorName":"逯高清","id":"92d8a0c8-0abf-43c1-ab79-d29345d39616","originalAuthorName":"逯高清"},{"authorName":"成会明","id":"f8e63ca2-146c-4e33-baa2-78431dc01e61","originalAuthorName":"成会明"}],"doi":"10.3321/j.issn:1005-3093.2009.02.002","fpage":"118","id":"b165d686-41e4-49c5-b83c-09b6b43d5ff8","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"efb9272f-0e85-49db-80bd-bf321c7b5578","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"a7d74c05-2630-47bf-8a7d-40591ec990cd","keyword":"钼酸盐","originalKeyword":"钼酸盐"},{"id":"b3b010b1-57fb-4dbf-a73a-3cbd083e7b87","keyword":"二氧化纳米管","originalKeyword":"二氧化钛纳米管"},{"id":"38e7ce02-ff4e-44ad-8bbf-8783f21a26ec","keyword":"透明薄膜","originalKeyword":"透明薄膜"}],"language":"zh","publisherId":"clyjxb200902002","title":"无基底透明二氧化纳米阵列薄膜的制备","volume":"23","year":"2009"},{"abstractinfo":"通过热蒸发法,以金为催化剂成功制备了Mn掺杂SnO2纳米带.并采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线荧光光谱(XRF)表征了Mn掺杂纳米带的结构和性质.结果表明样品表面光滑、平整,结晶良好,结构单一.紫外-可见光吸收光谱测试表明Mn掺杂二氧化纳米带在紫外区有强的吸收,其带隙为3.4 eV,吸收带边波长变为364.7 nm,比二氧化的吸收边344 nm红移了约20 nm.光致发光光谱(PL)显示Mn掺杂SnO2纳米带在波长为550~750 nm范围发光谱线的强度高于纯净的纳米带.光致发光谱共有3个发光峰,分别位于585nm、626 nm和673 nm处.在673 nm处的发光峰主要由纳米带中的O原子空位引起;585nm及626nm处的发光峰源于纳米带中掺杂Mn的4T1 (4G)→6 A1 (6S)跃迁光发射.","authors":[{"authorName":"马蒋","id":"5bd6e9b9-fa79-4ecf-9f68-fca7844f6a03","originalAuthorName":"马蒋"},{"authorName":"张恒","id":"f4cfb69c-706a-4e7a-9447-83ed2b604393","originalAuthorName":"张恒"},{"authorName":"赵德荀","id":"3aecb39a-35f4-4f52-bf93-1ae3b323a8b9","originalAuthorName":"赵德荀"},{"authorName":"张莹","id":"78f8b4e4-7b7c-48e3-895f-c6c1bd904af6","originalAuthorName":"张莹"},{"authorName":"刘应开","id":"56996b87-8722-4648-9782-2e807caa5bf7","originalAuthorName":"刘应开"}],"doi":"","fpage":"45","id":"fffdf904-0bfd-44e6-bb24-6a600201ce52","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8ffc3bd3-1073-4696-aea8-b47e3fe92ef9","keyword":"Mn掺杂SnO2","originalKeyword":"Mn掺杂SnO2"},{"id":"b31d2d27-b959-4998-b2c8-9659df36d21d","keyword":"热蒸发","originalKeyword":"热蒸发"},{"id":"bb170c02-0aef-4fb5-8722-03ec34b1b44b","keyword":"紫外-可见光吸收","originalKeyword":"紫外-可见光吸收"},{"id":"d3c7c778-75ba-4b9a-bf68-38dc144c12b9","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"cldb201322012","title":"Mn掺杂二氧化纳米带的制备及光学性质的研究","volume":"27","year":"2013"},{"abstractinfo":"随着玻璃电熔技术的快速发展,玻璃电熔炉对二氧化电极的电极要求越来越高,从早期的致密度到后来的电学性能,近期,随着陶瓷增韧方面的发展,对其力学性能特别是强韧性提出了新的要求.通过对二氧化电极研究的全面介绍,指出其最新发展及今后的发展方向.","authors":[{"authorName":"汪庆卫","id":"839c3c9f-79ba-4ae1-9e95-be4b6cf81f7c","originalAuthorName":"汪庆卫"},{"authorName":"宁伟","id":"9e5a9c94-6db0-45e6-b78e-a8f87cc008b3","originalAuthorName":"宁伟"},{"authorName":"蒋守宏","id":"7c6447d1-4b9d-4f0f-9a9a-722f14490c97","originalAuthorName":"蒋守宏"},{"authorName":"沈玉君","id":"53fad62e-53c2-41ed-90a3-76adc294e181","originalAuthorName":"沈玉君"}],"doi":"","fpage":"1042","id":"8d65e375-9428-418a-8cf8-ae4c9d0af3b5","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"06209942-9e0e-48ea-84f0-f18ad314002d","keyword":"二氧化电极","originalKeyword":"二氧化锡电极"},{"id":"d164d39b-c652-4516-b4e8-622df73f8843","keyword":"玻璃电熔炉","originalKeyword":"玻璃电熔炉"},{"id":"b70f0e12-9a83-4706-8db9-aa10b1e860f9","keyword":"常温电阻","originalKeyword":"常温电阻"},{"id":"d51662c3-b96a-4ac0-be8d-0255d08a4ac5","keyword":"强韧性","originalKeyword":"强韧性"}],"language":"zh","publisherId":"gncl2004z1290","title":"二氧化电极的研究及其发展","volume":"35","year":"2004"},{"abstractinfo":"利用透射电子显微镜(TEM)对气化法制备的纳米SnO2粉末的形貌进行了观察,并对纳米颗粒的结晶机理及各种形貌的形成机制进行了分析.TEM结果表明,纳米二氧化粉末绝大部分呈类球状,少量呈针棒状、板片状、矩形及六边形等多面体形貌,这些晶体形貌的形成与氧化过程,内壁摩擦力和高速气流等因素有关.","authors":[{"authorName":"张雪凤","id":"74f24efb-7734-402a-af00-026c4f7ea3fc","originalAuthorName":"张雪凤"},{"authorName":"常鹏北","id":"77c0c4a4-8ba9-4430-8286-20fcda3cfa16","originalAuthorName":"常鹏北"},{"authorName":"孙建科","id":"3fb783dc-45a5-4d31-b009-435527b51244","originalAuthorName":"孙建科"},{"authorName":"金建新","id":"35ad46f3-4bb9-4f21-a48a-487392645b7e","originalAuthorName":"金建新"},{"authorName":"张智强","id":"a44db9f7-6a7e-435e-a946-72b36c746855","originalAuthorName":"张智强"}],"doi":"","fpage":"488","id":"1c88d3d9-f595-4140-b6e8-64be43e732c1","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"37a21132-ed32-4fa5-bf92-2c357c1f3b76","keyword":"气化法","originalKeyword":"气化法"},{"id":"182fa0f6-36ef-4539-be04-7bd83a930245","keyword":"SnO2纳米粉末","originalKeyword":"SnO2纳米粉末"},{"id":"e03db075-1efb-4585-88c7-a3d65bc74691","keyword":"结晶机理","originalKeyword":"结晶机理"},{"id":"a9a96404-65b8-4ea8-b183-f8c2bbc29f7e","keyword":"晶体形貌","originalKeyword":"晶体形貌"}],"language":"zh","publisherId":"gncl200703043","title":"气化法制备二氧化纳米粉末结晶机理研究","volume":"38","year":"2007"}],"totalpage":6905,"totalrecord":69050}