{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以改性SiO2纳米微球为模板,经乳液聚合在其表面包覆聚苯乙烯-二乙烯基苯(PS-DVB)共聚物壳层,再通过交联的方法在PS-DVB壳层中形成微孔结构,最后用氩氟酸(HF)除去SiO2内核得到中空微孔聚合物微球(HMPMs).采用粒度分布仪、红外光谱、透射电镜、比表面积及孔隙分析仪对其形貌和结构进行了袁征.结果表明,当DVB含量增加到5%以后,才能获得中心对称的核壳结构SiO2/PS-DVB复合微球;随着DVB含量的增加,中空微孔聚合物的比表面积呈下降趋势,其中DVB含量为0.5%的中空微孔聚合物比表面积达到778.07 m2/g;中空微孔聚合物微球壳层中不仅存在大量微孔,同时存在少量介孔和大孔结构,通过调节DVB的含量在一定程度上可实现对孔结构的调控,这为进一步实现对各种荧光、磁性或药物小分子的负载研究提供了理论依据.","authors":[{"authorName":"陈苗","id":"4506e502-9673-495e-9342-3e5517d57d77","originalAuthorName":"陈苗"},{"authorName":"成功","id":"51894257-f224-4936-9a13-d8376ac9a779","originalAuthorName":"成功"},{"authorName":"魏枝芝","id":"bbe3414d-7df8-4df4-85fd-2998fdb1d150","originalAuthorName":"魏枝芝"},{"authorName":"刘嘉宁","id":"0e23acbb-e3c1-42b6-b4b9-78ad3ab6e516","originalAuthorName":"刘嘉宁"},{"authorName":"张高文","id":"82014080-0275-4d63-88e0-080943885700","originalAuthorName":"张高文"}],"doi":"","fpage":"162","id":"b02bca42-e0ca-4db5-b032-a84f517a2474","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f2e8010c-5b61-4d74-a29e-7b180e4c05b3","keyword":"中空聚合物微球","originalKeyword":"中空聚合物微球"},{"id":"cffd9229-610f-4df7-bab3-d78620d78fdf","keyword":"微孔聚合物","originalKeyword":"微孔聚合物"},{"id":"0dd0eefe-d262-499e-bd12-388115cc6ced","keyword":"交联","originalKeyword":"超交联"},{"id":"e5a91b8e-c84e-46ed-98b9-09040e6848b1","keyword":"SiO2微球","originalKeyword":"SiO2微球"}],"language":"zh","publisherId":"gfzclkxygc201508030","title":"交联法制备中空微孔聚合物微球","volume":"31","year":"2015"},{"abstractinfo":"通过溶胶凝胶、力学性能、红外光谱(FT-IR)和扫描电镜(SEM)研究了废弃固态多相多组分乙烯-乙酸乙烯酯共聚物(EVA)交联发泡物料在HAAKE流变仪中的解交联,以及力化学作用时间和温度对解交联的影响.结果表明,160℃~170℃时最佳解交联时间为24 min~28 min,力化学解交联使物料的拉伸强度由未经过解交联的7.5 MPa提高到11.5 MPa,提高了53%,使废弃EVA交联发泡物料网络体型结构发生断裂或生成小分子,其流动性能得到改善,使解交联后物料表面的亚微形态更光滑,相界面结合良好,是其资源化再生循环利用的新技术、新方法.","authors":[{"authorName":"刘灿培","id":"b202d521-c648-427d-8819-3107bc64a8cb","originalAuthorName":"刘灿培"},{"authorName":"王满凯","id":"72e68110-4195-453f-bdc6-b69a6a44b4c6","originalAuthorName":"王满凯"},{"authorName":"谢金川","id":"b3be7fe7-2eed-4b43-816e-e69c220d6e4d","originalAuthorName":"谢金川"},{"authorName":"林金火","id":"3fb4d084-f04a-4167-8d10-a66a05a02eff","originalAuthorName":"林金火"}],"doi":"","fpage":"111","id":"b6de4f22-626b-40d5-a7d3-b4aff29675f4","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"55cb332f-92e4-4d57-9c48-0c6ead7c3803","keyword":"乙烯-乙酸乙烯酯共聚物","originalKeyword":"乙烯-乙酸乙烯酯共聚物"},{"id":"d2143cb9-6162-4d51-9035-1921e0a83cd9","keyword":"解交联","originalKeyword":"解交联"},{"id":"8f3e9064-c51c-4a34-8892-3a7fe772a155","keyword":"力化学","originalKeyword":"力化学"},{"id":"19b1b2fe-6a4e-4433-8b7a-4d575bfaa51e","keyword":"再生资源化","originalKeyword":"再生资源化"}],"language":"zh","publisherId":"gfzclkxygc201301028","title":"废弃EVA交联发泡物料的力化学解交联","volume":"29","year":"2013"},{"abstractinfo":"本文在介绍交联聚丙烯基本原理和工艺的基础上,讨论了以氢氧化铝作为脱水物质,使硅烷交联反应在室温条件下自发进行,硅烷交联聚丙烯所需的水分在聚合物内部解决,省去PP常规交联时的热水交联过程.研究了自交联聚丙烯凝胶率及机械性能随交联时间的变化规律.硅烷接枝PP试样在室温下脱水发生自交联反应,交联PP凝胶含量在室温条件下随时间的变化逐渐升高,在室温下放置40天左右后,凝胶含量基本保持稳定;当Al(OH)3含量逐渐增大时,凝胶含量变得更大,当Al(OH)3含量增大到2%以上时,制品表面出现大量气泡;随时间的变化,交联PP体系的机械性能变得更优异,Al(OH)3含量为1%的新生态PP在室温下放置40天左右后,拉伸强度和断裂伸长率基本保持稳定.","authors":[{"authorName":"周剑","id":"e43f718b-e0a2-42af-94cc-1d53b74293cd","originalAuthorName":"周剑"},{"authorName":"丁国兰","id":"5930e371-c547-4147-8a04-78828f0e1f7b","originalAuthorName":"丁国兰"},{"authorName":"闻荻江","id":"93c7c729-22b7-4e8c-858c-17e99738b2fb","originalAuthorName":"闻荻江"}],"doi":"","fpage":"914","id":"319925b1-ef4c-45e8-8ceb-f2a4ed9fe8ca","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"4bbfd9d9-d4c9-4ea4-87ab-d50755eeb907","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"360090c0-fa22-4f9c-a742-e41c60a24bec","keyword":"硅烷","originalKeyword":"硅烷"},{"id":"4460003f-70e0-4c65-bf2e-33aec2264574","keyword":"接枝","originalKeyword":"接枝"},{"id":"defdee13-e147-4ca1-a5bd-be8ea025aaea","keyword":"自交联","originalKeyword":"自交联"},{"id":"d252bac1-9b12-43dc-a308-9b5766b5e3b1","keyword":"氢氧化铝","originalKeyword":"氢氧化铝"}],"language":"zh","publisherId":"clkxygc200806021","title":"室温自交联聚丙烯","volume":"26","year":"2008"},{"abstractinfo":"用分子链上含有50~200个羟基的聚乙烯醇缩丁醛(PVB)与4,4′-二苯甲烷二异氰酸酯(MDI)组成了一个交联聚合体系.反应初期首先形成分子链上含有-NCO和-OH基团的预聚物分子.预聚物分子在溶液中呈无规线团形态,并存在线团内和线团间反应,由于这是一对竞争反应,所以使交联过程得以控制.PVB分子的官能度与MDI用量可以改变分子内和分子间反应的数量,这正是控制交联过程及设计具有有限分子量的可溶性交联大分子所需要的.","authors":[{"authorName":"栗方星","id":"fd675e2d-2b23-4188-8bcb-a2884c874c7b","originalAuthorName":"栗方星"},{"authorName":"陈俊","id":"98caa890-21a1-4338-9748-e8f41409f66d","originalAuthorName":"陈俊"},{"authorName":"程晓辉","id":"a5f1d7af-6d15-49c0-b536-355163677ea8","originalAuthorName":"程晓辉"},{"authorName":"孙瑞敏","id":"ff35609e-4c9f-4ac3-9dc8-1e5803fbf304","originalAuthorName":"孙瑞敏"},{"authorName":"刘冬平","id":"5a4e7ddf-4130-4a39-9129-dda19ee62d70","originalAuthorName":"刘冬平"},{"authorName":"刘遵峰","id":"1616fa41-a8fd-47c1-8770-e27734cef04b","originalAuthorName":"刘遵峰"},{"authorName":"谭立志","id":"db4d579d-2a15-4917-b199-eb68b499a21c","originalAuthorName":"谭立志"},{"authorName":"于芳菲","id":"11a8a572-c2f6-4057-8497-fd9d1c3f27e1","originalAuthorName":"于芳菲"},{"authorName":"康健","id":"7ea260e3-8692-4eda-a33a-9ecd22b46f0b","originalAuthorName":"康健"}],"doi":"","fpage":"30","id":"642baa71-1e92-4ac6-ad63-4bb57e5d8833","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"538144b7-4a39-498b-9379-b3ee0998a014","keyword":"交联聚合","originalKeyword":"交联聚合"},{"id":"70028be0-7de8-416a-b481-5f8473c71c7d","keyword":"分子内反应","originalKeyword":"分子内反应"},{"id":"92658adb-74fe-4895-af55-0795b549d372","keyword":"分子间反应","originalKeyword":"分子间反应"},{"id":"899bcf2b-1b68-4577-8e85-d84eef8f9fba","keyword":"高分子线团","originalKeyword":"高分子线团"}],"language":"zh","publisherId":"gfzclkxygc200603007","title":"可控交联聚合的设计","volume":"22","year":"2006"},{"abstractinfo":"通过凝胶含量、平衡溶胀比和高温模量等的测定,比较了过氧化物交联LDPE和硅烷交联LDPE的结构与性能的差异.根据交联网络方程和Mooney-Rivlin方程的计算表明,当凝胶含量相同时,过氧化物交联聚乙烯的交联密度远小于硅烷交联聚乙烯的交联密度.采用苯中的平衡溶胀比或交联密度来表征LDPE交联物的交联程度比采用凝胶含量来表征更为确切.而LDPE/沸腾苯体系的Huggins参数为0.30.","authors":[{"authorName":"龚方红","id":"f1dc6dfd-7d1f-4991-887f-bf0c38697b73","originalAuthorName":"龚方红"},{"authorName":"俞强","id":"0a5e3d6c-3741-4741-87af-a793b4346d45","originalAuthorName":"俞强"},{"authorName":"李锦春","id":"b5bf4d25-e6f0-4c8d-8e50-b799edb7c5af","originalAuthorName":"李锦春"},{"authorName":"林明德","id":"cfdd16cc-a581-4e5f-9fa2-4e95e2c14280","originalAuthorName":"林明德"}],"doi":"","fpage":"140","id":"19fbdf68-379a-49a5-a0ee-351d86d3ec66","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"cbfd7151-0d0a-4d6f-8c9d-7e8cda0f920d","keyword":"交联聚乙烯","originalKeyword":"交联聚乙烯"},{"id":"f0601cbd-5b23-4be0-8bcc-9d2050399233","keyword":"凝胶含量","originalKeyword":"凝胶含量"},{"id":"08cb00be-2f15-4b66-93d0-927d52e2c2a7","keyword":"平衡溶胀","originalKeyword":"平衡溶胀"},{"id":"984e9432-e638-45a6-ba50-1603658d773e","keyword":"交联密度","originalKeyword":"交联密度"},{"id":"40b2097a-de07-4b24-9d74-dbee26f5fc80","keyword":"Huggins参数","originalKeyword":"Huggins参数"}],"language":"zh","publisherId":"gfzclkxygc200002041","title":"LDPE交联物结构的研究","volume":"16","year":"2000"},{"abstractinfo":"提出在化学交联的吸油树脂中引入物理交联的设想.认为物理交联的热可逆性和持久蠕动性可以解决吸油倍率低和吸放油可逆性差的缺点.介绍了物理交联网的类型与特性,综述了交联的缠结、拓扑因素、蠕动模型、横向扩散模型以及瞬变网模型.讨论了物理交联的热力学性质以及应力松弛特性.","authors":[{"authorName":"徐萍英","id":"c5866058-4012-4c2b-a140-6c541364a32e","originalAuthorName":"徐萍英"},{"authorName":"单国荣","id":"1cf5eda3-35b1-4b68-9d0a-50ae55b3b0b9","originalAuthorName":"单国荣"},{"authorName":"翁志学","id":"beba2027-31b4-4f4c-ba1b-0d1dc26f147b","originalAuthorName":"翁志学"},{"authorName":"黄志明","id":"f62cbbb4-64fd-451d-a827-cfeddbdccb9c","originalAuthorName":"黄志明"}],"doi":"","fpage":"601","id":"de9ea235-4c2f-43b2-bbd1-cbaaf2ba796d","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"29d5b3b7-eaf3-4a37-b6fe-21957919a783","keyword":"吸油树脂","originalKeyword":"吸油树脂"},{"id":"da55f0e5-ec45-48d5-837f-b3eeadb1e69d","keyword":"物理交联","originalKeyword":"物理交联"},{"id":"bb412932-7832-493d-9b90-e548e2b86384","keyword":"蠕动模型","originalKeyword":"蠕动模型"}],"language":"zh","publisherId":"gncl200206010","title":"吸油树脂中的物理交联","volume":"33","year":"2002"},{"abstractinfo":"通过利用常规的投影仪,根据Flory交联结构溶胀理论,测定了几种热固性树脂的交联密度.研究显示,本方法可简便定量比较具有相似结构的热固性体系的交联密度.","authors":[{"authorName":"武利民","id":"8982fe9c-745a-4ab5-9c2a-ae0ccd665eac","originalAuthorName":"武利民"},{"authorName":"钱峰","id":"663d9c44-a711-4363-9018-7c4fb180bde4","originalAuthorName":"钱峰"},{"authorName":"游波","id":"b8776f4a-109e-401e-a50d-e0ac371a83ab","originalAuthorName":"游波"},{"authorName":"李丹","id":"99bff1c3-fd79-48f3-a0f8-3e33c58ee123","originalAuthorName":"李丹"}],"doi":"","fpage":"75","id":"361f3c8d-d348-482c-8b94-f0a5876777bd","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"17a775de-0ade-4426-8553-00f8dd1da728","keyword":"交联密度","originalKeyword":"交联密度"},{"id":"7a82c666-7636-420a-833e-a8c9e74837f4","keyword":"热固性树脂","originalKeyword":"热固性树脂"},{"id":"17c376ce-3b35-4a1f-8578-8b81e1e0c19f","keyword":"投影仪","originalKeyword":"投影仪"}],"language":"zh","publisherId":"gfzclkxygc200106018","title":"热固性树脂交联密度的测定","volume":"17","year":"2001"},{"abstractinfo":"研究了过氧化二异丙苯(DCP)对乙烯-醋酸乙烯共聚物(EVA)交联的影响,分析交联过程的反应机理.对交联的EVA样品进行紫外光辐照,分析在该过程中所发生的反应,并研究加入紫外线吸收剂2-羟基-4-正辛氧基-二苯甲酮(UV-531)后,对交联EVA样品在紫外光辐照下交联的影响.","authors":[{"authorName":"王川艳","id":"7563acd3-0d8e-4cbe-8b37-f2234067c14b","originalAuthorName":"王川艳"},{"authorName":"苑会林","id":"34f613b9-5fd6-4f9a-abbd-5ab164632abe","originalAuthorName":"苑会林"}],"doi":"10.3969/j.issn.1671-5381.2011.05.003","fpage":"7","id":"a8899e03-f346-49de-ae8c-52904423657f","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"a4637318-8fde-42de-ae6d-5de3ecdb6fa6","keyword":"EVA","originalKeyword":"EVA"},{"id":"ecf465a2-22f6-4036-a57b-1c2251de62f9","keyword":"交联","originalKeyword":"交联"},{"id":"33903a65-9fca-48eb-807e-8d6a3a872ea3","keyword":"紫外光辐照","originalKeyword":"紫外光辐照"}],"language":"zh","publisherId":"hccllhyyy201105003","title":"EVA交联机理的研究","volume":"40","year":"2011"},{"abstractinfo":"利用差视扫描量热分析方法研究了聚乙烯的过氧化物交联、硅烷交联、辐照交联方法对交联聚乙烯电缆绝缘的结晶形态的影响,发现聚乙烯交联的方法不一样,材料所经历的热历史差异很大,从而交联后聚乙烯的结晶形态差异也很大.交联聚乙烯的结晶过程和交联过程存在互相作用 .因此在利用交联方法改性提高聚乙烯性能的同时,还要尽可能控制热过程 ,使材料聚集态结构处于合理的状态,才能使交联聚乙烯绝缘具有更优异的性能 .","authors":[{"authorName":"朱爱荣","id":"577c9048-d4c7-408e-8b8a-71bf10d01725","originalAuthorName":"朱爱荣"},{"authorName":"曹晓珑","id":"c395c80d-88ab-4e96-9f72-3cfd51565d3c","originalAuthorName":"曹晓珑"}],"doi":"10.3969/j.issn.1009-9239.2005.03.012","fpage":"38","id":"0989afcd-a73d-4308-8738-ead56f566e0b","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"dab3f518-0b45-4e73-8b6a-1ad853798168","keyword":"交联聚乙烯","originalKeyword":"交联聚乙烯"},{"id":"b0f2f3fc-b9fe-40b5-b06b-562e8f8d655d","keyword":"绝缘","originalKeyword":"绝缘"},{"id":"67836b35-d723-4aa4-ab68-2c4d8d199a79","keyword":"结晶形态","originalKeyword":"结晶形态"},{"id":"0821b6b6-4806-4596-ab86-ba0776aeb36b","keyword":"差热分析","originalKeyword":"差热分析"}],"language":"zh","publisherId":"jycltx200503012","title":"不同交联方式对交联聚乙烯电缆结晶形态影响的研究","volume":"38","year":"2005"},{"abstractinfo":"用不同结构的乙烯基硅烷与聚乙烯进行熔融接枝及水解缩合交联反应,通过对接枝物的结构表征,交联行为以及交联前后结晶性能,高温应力~应变曲线的测定,研究了不同结构的乙烯基硅烷对硅烷与聚乙烯的接枝反应和交联反应的影响.结果表明,不同烷氧基的硅烷在接枝,交联性能上存在较大差异;接枝反应的活性与烷氧取代基的空间位阻效应和电子效应有关;在A172接枝情况下,接枝大分子自由基的终止方式在促进接枝和大分子支化方面起着重要的作用;交联反应的速率与烷氧基的水解缩合反应能力有关,而交联程度则取决于硅烷的接枝率.由于交联网络的存在,硅烷交联聚乙烯的高温力学性能显著提高,交联密度决定了其抵抗变形的能力,硅烷接枝交联后,聚乙烯的结晶速率,熔点和结晶度都有不同程度的降低.","authors":[{"authorName":"俞强","id":"e48b9f55-3fe9-444e-894a-98756f4b7605","originalAuthorName":"俞强"},{"authorName":"李锦春","id":"bdc3030a-c3b5-4a74-af0f-38c992bcee48","originalAuthorName":"李锦春"},{"authorName":"林明德","id":"88bf8923-22b9-4339-be97-ca6c4a17b2ae","originalAuthorName":"林明德"},{"authorName":"吕海波","id":"56722871-4093-4107-a4c1-d81517c0bf29","originalAuthorName":"吕海波"}],"doi":"","fpage":"48","id":"9bf2201e-f433-4cdf-9a4e-f795e8e9aa9e","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f3643589-8126-41a4-bc96-67c56607cd1c","keyword":"乙烯基硅烷","originalKeyword":"乙烯基硅烷"},{"id":"b576fcf1-02af-4e2a-9d32-b635522acb88","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"8f2fb790-ac13-4cf2-9041-2c4ff9ae5cd3","keyword":"熔融接枝","originalKeyword":"熔融接枝"},{"id":"23883983-2fe4-44ab-84ca-f17819b18674","keyword":"交联","originalKeyword":"交联"}],"language":"zh","publisherId":"gfzclkxygc199904014","title":"硅烷接枝交联聚乙烯的研究","volume":"15","year":"1999"}],"totalpage":798,"totalrecord":7974}