{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了邻苯二酚与乙醇气固相单醚化反应用固体酸催化剂表面上的积炭行为,并用TG-DTA,BET,GC-MS,FT-IR和元素分析等手段对积炭物种进行了表征. 结果表明,催化剂上有两种类型的积炭,一类属可溶性积炭,主要由二苯醚及其衍生物组成,可在低温燃烧除去; 另一类属不可溶性积炭,主要为缺氢的芳烃类聚合物或类石墨碳,需在高温下才能烧除. 积炭主要发生在4~8 nm范围的中孔内,导致反应后的催化剂大孔范围的孔分布所占的分数增大. 随着反应的进行,总积炭量逐渐增多.","authors":[{"authorName":"","id":"ef3409cf-f39e-41c2-865d-e71f706a107a","originalAuthorName":"李雪梅"},{"authorName":"张文祥","id":"9a358cde-27af-49ee-a891-a6b4be879d08","originalAuthorName":"张文祥"},{"authorName":"朱小","id":"218eb286-550a-4fc4-9471-8954d0baef9e","originalAuthorName":"朱小梅"},{"authorName":"善洪岩","id":"8a8f9d6b-6be7-40b3-ba62-67ffc955dd86","originalAuthorName":"善洪岩"},{"authorName":"周秀清","id":"842eaaff-5c2b-4085-b19c-256ddf9935ee","originalAuthorName":"周秀清"},{"authorName":"蒋大振","id":"dc575f68-f655-4dc6-9bed-fa524b0377ad","originalAuthorName":"蒋大振"},{"authorName":"吴通好","id":"04b0e463-3580-4733-b972-cadac4e8257b","originalAuthorName":"吴通好"},{"authorName":"唐敖庆","id":"d2588e6d-d8b2-4a4a-91c5-a0c585290c98","originalAuthorName":"唐敖庆"}],"doi":"","fpage":"364","id":"5707ca93-4668-4802-b238-83f0b4ac9044","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"df9c5c90-0cf2-4a83-bc0e-4a018a9ea4c3","keyword":"邻苯二酚","originalKeyword":"邻苯二酚"},{"id":"3bc48844-f0c7-4fb4-be1d-6f3f13ca580f","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"c1097516-2f5d-46ce-9c93-3d857325164e","keyword":"单醚化","originalKeyword":"单醚化"},{"id":"83d4ee7d-bfc3-4f8d-b635-00028be78a4c","keyword":"邻乙氧基苯酚","originalKeyword":"邻乙氧基苯酚"},{"id":"7f37492c-6ae1-4ead-b374-334362313704","keyword":"固体酸","originalKeyword":"固体酸"},{"id":"0c661b87-8efb-40f8-abb4-5e4ce86304a4","keyword":"积炭","originalKeyword":"积炭"},{"id":"18194f54-054c-4377-8944-711f8c87c8b8","keyword":"失活","originalKeyword":"失活"}],"language":"zh","publisherId":"cuihuaxb200305012","title":"邻苯二酚与乙醇单醚化反应用固体酸催化剂表面上的积炭行为","volume":"24","year":"2003"},{"abstractinfo":"正渗透过程是以渗透压差为驱动力的膜过程.其中膜的结构参数是决定膜的传质阻力和水通量的关键因素.本文系统介绍了本课题组在调控界面聚合正渗透膜材料结构参数方面的研究进展.利用共混亲水高分子材料调节基膜的亲水性,利用双层刮膜技术调节基膜的孔结构.结果表明利用亲水基膜和具有贯通孔结构的基膜获得FO膜具有更低的膜结构参数,其正渗透性能也更高.","authors":[{"authorName":"肖佩佩","id":"7c76b312-e186-4436-9a64-5d1a10cc82b2","originalAuthorName":"肖佩佩"},{"authorName":"殷勇","id":"bbe8b5f0-3eeb-4e45-a481-d030b6938ebb","originalAuthorName":"殷勇"},{"authorName":"宋健峰","id":"82b224ac-43b3-4eba-8afa-dc93a939c99c","originalAuthorName":"宋健峰"},{"authorName":"王周为","id":"c569071c-a144-44ea-a744-69e78dbda144","originalAuthorName":"王周为"},{"authorName":"","id":"184f889e-91c6-484a-88c8-3dc853a5550e","originalAuthorName":"李雪梅"},{"authorName":"李刚","id":"b304b52a-f072-4837-b2df-b34ed847e3ce","originalAuthorName":"李刚"},{"authorName":"曾楚怡","id":"db5a3ef4-2fc7-4e5c-ab41-6bbf7c040f98","originalAuthorName":"曾楚怡"},{"authorName":"何涛","id":"b05fa976-f936-49a9-9037-db590686b53d","originalAuthorName":"何涛"}],"doi":"","fpage":"40","id":"6a5d51aa-7e50-4c73-9de5-e57b8b8c425c","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"257114a8-7c60-4506-809d-16dda1c1be85","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"6c76893c-3bd2-4b19-8032-d9def2a78741","keyword":"浓差极化","originalKeyword":"浓差极化"},{"id":"ef100b3b-46f1-41c4-b870-569387ff531e","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"e44b8879-08bf-4df3-8b74-50e6d90d15cf","keyword":"双层刮膜法","originalKeyword":"双层刮膜法"}],"language":"zh","publisherId":"mkxyjs201405008","title":"界面聚合正渗透膜结构参数的调控","volume":"34","year":"2014"},{"abstractinfo":"正渗透技术以其低能耗高效率等特点在分离领域有广泛的应用前景,而驱动液的缓慢发展限制了该技术的进一步应用.传统的无机盐驱动溶质如NaCl等在正渗透过程中会产生严重的浓差极化现象和驱动溶质流失,导致驱动效率下降和溶质损失.针对上述问题现以氯化钠为参考,考察了乙二胺及乙二胺四乙酸有机盐作为正渗透驱动溶质对水通量和盐损失的影响.以商业HTI正渗透膜为评价介质,驱动溶质为0.5 mol/L时,EDTA盐,EDA和NaCl盐的水通量分别为14.5、12.8、12.5 L/(m2·h),它们对应的特性溶质逆向扩散值(Js/Jw)分别为0.3、1.1、1.0 g/L.结果表明EDTA盐作为正渗透驱动溶质时可提高正渗透过程的水通量并可显著的降低驱动溶质流失,说明该类物质有作为正渗透驱动溶质的发展前景.","authors":[{"authorName":"王皓","id":"06e9908e-4d10-48b3-bc21-dca84584a30b","originalAuthorName":"王皓"},{"authorName":"","id":"b1584b63-f4c1-4e08-a449-f925c40447f2","originalAuthorName":"李雪梅"},{"authorName":"何涛","id":"db0173f5-75f0-4066-b76e-1a88856298b1","originalAuthorName":"何涛"},{"authorName":"王周为","id":"cd97136a-3770-4c0e-852e-cacc0d215a88","originalAuthorName":"王周为"},{"authorName":"赵宝龙","id":"1ed4181c-69cf-4e26-8386-4d635579286b","originalAuthorName":"赵宝龙"},{"authorName":"宋健峰","id":"ae004ad9-e139-4dc6-abbb-26d684508f56","originalAuthorName":"宋健峰"},{"authorName":"殷勇","id":"8371bc29-4afc-4e0d-93b5-0696969e449d","originalAuthorName":"殷勇"},{"authorName":"曾楚怡","id":"e61a879a-cf34-4106-9625-c1aa387134bf","originalAuthorName":"曾楚怡"},{"authorName":"林晓","id":"e4802b5c-dcc5-4e05-b0ce-194e74bd58e8","originalAuthorName":"林晓"}],"doi":"","fpage":"87","id":"d0538d3d-5d2d-466b-9d16-3494e22649db","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"4458c537-bcea-416a-9253-ea0094b0cc7a","keyword":"乙二胺","originalKeyword":"乙二胺"},{"id":"0f0980ed-816a-459a-beae-e509bdbe63d5","keyword":"乙二胺四乙酸","originalKeyword":"乙二胺四乙酸"},{"id":"94678ada-33f9-454e-9711-0abf964ba4e7","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"9624c779-a898-4d19-bfc3-915f1c27dc1b","keyword":"驱动液","originalKeyword":"驱动液"}],"language":"zh","publisherId":"mkxyjs201306016","title":"乙二胺、乙二胺四乙酸有机盐作为FO过程驱动溶质的研究","volume":"33","year":"2013"},{"abstractinfo":"膜蒸馏膜的疏水性是控制出水品质和过程运行稳定性的关键之一.本文系统总结了本课题组采用CF4等离子体对亲水、疏水膜材料进行疏水改性用于膜蒸馏的研究进展,描述了CF4等离子体的改性机理及疏水改性膜的直接接触式膜蒸馏过程的性能等.对超疏水改性对膜性能影响的机理进行了探索,发现(超)疏水改性可提高膜蒸馏过程的有效蒸发面积,从而提高膜蒸馏过程的热效率和通量,为制备高性能新型蒸馏膜材料提供了新思路.","authors":[{"authorName":"杨迟","id":"2fad5187-4c95-4dd8-abe4-4950309e279b","originalAuthorName":"杨迟"},{"authorName":"谢应明","id":"c32460e0-cf2b-4180-b476-85b0be6ada98","originalAuthorName":"谢应明"},{"authorName":"殷勇","id":"80bf68df-de5a-40c9-acc8-a94367961825","originalAuthorName":"殷勇"},{"authorName":"田苗苗","id":"bd1431d2-64d8-417a-99c2-7c4bec7d12a0","originalAuthorName":"田苗苗"},{"authorName":"宋健峰","id":"29690417-38b5-4adb-a518-998b23016892","originalAuthorName":"宋健峰"},{"authorName":"春霞","id":"0e4677eb-cc9c-45fd-a303-fef281de5c21","originalAuthorName":"李春霞"},{"authorName":"孔丁峰","id":"2e56730a-4fb2-4e66-8c9c-43edf7336881","originalAuthorName":"孔丁峰"},{"authorName":"","id":"8a01c5bd-2234-4f0b-814f-9cb65abc04da","originalAuthorName":"李雪梅"},{"authorName":"何涛","id":"10389185-f139-4887-ba37-bfe3a3da946c","originalAuthorName":"何涛"}],"doi":"","fpage":"4","id":"dd6f987f-5056-4381-a019-1f1370bd92e8","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"f2939bb1-694e-4162-ac0b-edec9e74a3e4","keyword":"膜蒸馏","originalKeyword":"膜蒸馏"},{"id":"bfde8da6-576c-403b-b756-c1a4e83fff6c","keyword":"等离子体改性","originalKeyword":"等离子体改性"},{"id":"8f9b000b-5f64-443c-bc6e-46600298b7e4","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"084ae9e6-6cbc-48e5-ac4e-c0c32735137a","keyword":"通量","originalKeyword":"通量"}],"language":"zh","publisherId":"mkxyjs201405002","title":"CF4等离子体改性超疏水膜蒸馏膜材料","volume":"34","year":"2014"},{"abstractinfo":"为了研究灵香草浸膏的热裂解行为,采用在线有氧热裂解-冷阱捕集-气相色谱-质谱联用技术,模拟卷烟燃吸状态对灵香草浸膏进行了热裂解分析,并对灵香草浸膏热裂解前后的挥发性成分进行了比较分析。从灵香草浸膏的热裂解产物中共鉴定出64种成分,占总峰面积的88.27%,主要成分为高级脂肪酸及其酯类;灵香草浸膏热裂解后的挥发性成分数量多于裂解前(45个),说明灵香草浸膏经热裂解生成了新的化合物。热裂解前后共有的化合物有20个,主要是高级脂肪酸及其酯类、新植二烯、5-(羟甲基)-2-呋喃甲醛、3-羟基-4,5-二甲基-2(5H)-呋喃酮等化合物。在线有氧裂解模式更接近烟用添加剂样品的真实裂解状态,操作简单、快捷,结果准确。","authors":[{"authorName":"杨叶昆","id":"565f7a08-0d49-4969-b43c-cd5c57aad12d","originalAuthorName":"杨叶昆"},{"authorName":"缪恩铭","id":"e77d917f-97f1-40fd-b064-1bc1a1fa003b","originalAuthorName":"缪恩铭"},{"authorName":"耿永勤","id":"8454cb92-003a-47fd-a6d1-571ce79a20a3","originalAuthorName":"耿永勤"},{"authorName":"魏玉玲","id":"75d293dd-d55f-4c0a-920e-bc9f127f7e3f","originalAuthorName":"魏玉玲"},{"authorName":"徐济仓","id":"51a6d688-b2de-4084-8d8a-73d8b6cf1ec7","originalAuthorName":"徐济仓"},{"authorName":"","id":"d8ee4983-d2a4-4bf3-8d6b-7b387b426d25","originalAuthorName":"李雪梅"},{"authorName":"丁中涛","id":"69c5f514-4529-4866-b6dd-d22ac936179c","originalAuthorName":"丁中涛"},{"authorName":"周俊","id":"62e8df26-c12e-469a-a5ab-2506579f28f3","originalAuthorName":"周俊"}],"doi":"10.3724/SP.J.1123.2013.11049","fpage":"547","id":"5171922e-b543-44ec-9639-7f0d6e730aae","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"86d66f29-067b-44d4-bce5-cd31d9bf6d67","keyword":"气相色谱-质谱","originalKeyword":"气相色谱-质谱"},{"id":"5341799f-e3ce-4729-b6ef-664f85869fa7","keyword":"冷阱捕集","originalKeyword":"冷阱捕集"},{"id":"772370d2-5440-4b5a-b580-6dffb3242886","keyword":"挥发性成分","originalKeyword":"挥发性成分"},{"id":"c46d32dd-445c-4599-b9d9-6e0f52dcaf84","keyword":"灵香草","originalKeyword":"灵香草"},{"id":"95e29571-9c3f-4d55-a7d9-8c8b9da5119b","keyword":"热裂解","originalKeyword":"热裂解"}],"language":"zh","publisherId":"sp201405019","title":"在线裂解-气相色谱-质谱法研究灵香草浸膏的热裂解","volume":"","year":"2014"},{"abstractinfo":"以界面聚合中空纤维正渗透膜为基础,系统介绍复合正渗透膜的支撑层结构和形貌,以及特性参数如膜纯水渗透系数A值、溶质透过系数B值、膜结构参数S值的测定和计算方法.这些方法对平板正渗透膜材料的表征也具有借鉴意义.","authors":[{"authorName":"肖婷婷","id":"d7932b9e-ef9c-4e7f-bce3-c3cc24ca8211","originalAuthorName":"肖婷婷"},{"authorName":"刘仁啸","id":"a5e7a6b8-75f6-4b44-aa18-1509f147bc99","originalAuthorName":"刘仁啸"},{"authorName":"陈刚","id":"03f786c2-8453-481a-b037-bc1c114af817","originalAuthorName":"陈刚"},{"authorName":"赵宝龙","id":"a1a4f1c0-0ef8-4a28-a1fa-958322a9753c","originalAuthorName":"赵宝龙"},{"authorName":"王周为","id":"cd3a148a-d433-4c18-a52b-d709bb8858d2","originalAuthorName":"王周为"},{"authorName":"","id":"fed8cb87-82f6-4dab-a774-695dbad9ec83","originalAuthorName":"李雪梅"},{"authorName":"业萍","id":"7fafdc59-cef4-400b-b526-971bbd67eb49","originalAuthorName":"李业萍"},{"authorName":"赵海洋","id":"b0b0d1ba-2c4d-4821-a291-27b45979de36","originalAuthorName":"赵海洋"},{"authorName":"张林","id":"9ccf816d-565b-4c8a-969b-7588ccbdeefc","originalAuthorName":"张林"}],"doi":"10.16159/j.cnki.issn1007-8924.2016.04.009","fpage":"54","id":"c4d6cd83-88e7-4d18-9700-eba39e673e5c","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"b5f4659d-19a9-4be6-a222-79bcde61b4f4","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"eecadba4-1a0a-451e-a2b6-62fb1c791b79","keyword":"中空纤维复合膜","originalKeyword":"中空纤维复合膜"},{"id":"4b21cb72-a778-4025-83c4-5b068bfb6401","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"c61035ce-e749-4009-8432-3e00ae0bbd24","keyword":"表征方法","originalKeyword":"表征方法"}],"language":"zh","publisherId":"mkxyjs201604009","title":"中空纤维复合正渗透膜的表征","volume":"36","year":"2016"},{"abstractinfo":"同时刮膜法是一种利用涂层与支撑层分离来制备高表面开孔率微孔膜的方法.本文采用同时刮膜法制备PSf微孔膜,考察了底层制膜液中聚砜的浓度、添加剂PVPK-90含量、凝胶浴温度以及PEI涂层厚度等参数对膜结构和性能的影响.结果表明,PSf溶液中聚合物浓度增大使溶液的黏度明显增大,同时膜表面凹洞数目减少,孔径减小,且水通量减少.添加剂PVP提高了孔与孔间的连通性,PSf膜的纯水通量随着PVP含量的增加而增大.提高凝胶浴温度,对膜孔隙率影响较小,但平均孔径和水通量增大.PEI层的厚度影响相分离前锋到达PEI与PSf溶液界面的时间,PET层越厚,PSf膜表面结构就越疏松,膜孔径和水通量越大,但孔隙率反而下降.上述结果对双层刮膜法制备孔径可控高通量的微孔膜具有重要意义.","authors":[{"authorName":"王周为","id":"08fc57fb-5976-4bd9-a9d6-3f29db34e5a0","originalAuthorName":"王周为"},{"authorName":"季瑜","id":"ee151147-6631-4315-953d-169a1c7acf21","originalAuthorName":"季瑜"},{"authorName":"隋波","id":"df6885ef-e523-4ccc-bf7d-174e3a96cfcd","originalAuthorName":"隋波"},{"authorName":"","id":"805b926e-0e44-47a8-bc6c-d51b87862bfa","originalAuthorName":"李雪梅"},{"authorName":"张云燕","id":"b6a8e926-523b-4587-90cc-101fd14a43d0","originalAuthorName":"张云燕"},{"authorName":"殷勇","id":"da215c8c-7608-4647-acf8-41c4222bfe9e","originalAuthorName":"殷勇"},{"authorName":"何涛","id":"e92166ba-603a-4c02-8df4-ffea115ef9f4","originalAuthorName":"何涛"}],"doi":"10.3969/j.issn.1007-8924.2011.02.008","fpage":"39","id":"69884a1c-d87c-43b8-889f-4f96fbbb833e","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"47e038a5-3265-43cb-b4ce-d707e469b5c2","keyword":"聚砜","originalKeyword":"聚砜"},{"id":"278708f5-a49d-4365-8250-0012ccba501f","keyword":"双层刮膜法","originalKeyword":"双层刮膜法"},{"id":"1e0dbad3-cb11-4dbd-b2f7-225a82a2994c","keyword":"微孔膜","originalKeyword":"微孔膜"}],"language":"zh","publisherId":"mkxyjs201102008","title":"双层刮膜法中聚砜膜结构的控制和性能研究","volume":"31","year":"2011"},{"abstractinfo":"以PEI与PSf为对象,研究了双层刮膜过程中两种高分子分层的原因,考察了PSf膜表面开孔结构的形成原理.考察了两层制膜液间的凝胶值之差、膜的收缩率以及添加剂PVPK-90等热力学和动力学参数对分层/粘结性的影响.研究发现,凝胶值作为一个热力学参数不能单独作为高分子分层/粘结的标准;同时发现,通过提高凝胶浴温度减少PEl膜与PSf膜之间的收缩率差别可以促进粘结,研究还发现,PVPK-90起到了促进膜层间粘结性的作用.采用含不同量溶剂的凝胶浴,证明了双层刮膜过程中PSf膜的表面开孔结构是由于PEI膜为支撑层提供了一个近似富含溶剂的凝胶浴得到的.","authors":[{"authorName":"张云燕","id":"51c949e2-be9b-45ca-8f49-ab569043dc20","originalAuthorName":"张云燕"},{"authorName":"季瑜","id":"29fe9d73-adfa-40c8-b650-52d5ffd5455d","originalAuthorName":"季瑜"},{"authorName":"隋波","id":"d2322812-f509-403c-bf89-aec87e9b8edd","originalAuthorName":"隋波"},{"authorName":"","id":"97a64831-fdc7-413f-9015-a047c17b27a9","originalAuthorName":"李雪梅"},{"authorName":"殷勇","id":"40c4144e-c6c4-48e6-a93a-cfc82c0cc1e1","originalAuthorName":"殷勇"},{"authorName":"王周为","id":"e84fa41d-f987-472a-bfe8-4842e30fe0f6","originalAuthorName":"王周为"},{"authorName":"何涛","id":"018d7c9b-dc2b-49e6-ac83-c8db2588c5d0","originalAuthorName":"何涛"}],"doi":"10.3969/j.issn.1007-8924.2011.01.004","fpage":"25","id":"69d368dd-5fa1-4295-bc29-86efc943e9f5","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"c1fb966f-9671-40f5-a3cd-3302966bb7ae","keyword":"同时刮膜法","originalKeyword":"同时刮膜法"},{"id":"5417715a-1d5b-4ed7-87f1-ee62dbc47999","keyword":"微滤膜","originalKeyword":"微滤膜"},{"id":"b9ba1a4a-a85f-427e-9949-b6bd7d0b13e3","keyword":"分层","originalKeyword":"分层"},{"id":"a6b2aa64-ab05-4e98-8af4-78bc10c45cec","keyword":"粘结性","originalKeyword":"粘结性"}],"language":"zh","publisherId":"mkxyjs201101004","title":"双层刮膜中分层/粘结和开孔结构形成机理研究","volume":"31","year":"2011"},{"abstractinfo":"从制备催化剂的原料、沉淀剂种类、铝沉淀物终点的pH值、水量及原料的加入顺序等方面考察了制备条件对AlP1.30-Ti0.30Si0.17体系的结构及催化性能的影响. 结果表明,以自制新鲜氢氧化铝为铝源,以硅溶胶为硅源,以钛酸丁酯为钛源,以氨水为沉淀剂,在pH=6.2,c(Al3+)=0.64 mol/L(V(H2O)=200 ml)的条件下,采用通常的沉淀方法可制备出性能优良的催化剂. 催化剂的酸性是影响其催化性能的主要因素,主产物选择性与酸强度有关,酸强度高的催化剂具有较低的主产物选择性;催化剂的活性与其孔径及表面酸量有关;催化剂中的B酸中心是反应可能的活性中心.","authors":[{"authorName":"","id":"b31a67d0-e078-4960-9e6c-98d56ca48d75","originalAuthorName":"李雪梅"},{"authorName":"朱小","id":"a4d390cd-d708-4454-88ce-3f127736af5c","originalAuthorName":"朱小梅"},{"authorName":"张文祥","id":"f6bccf87-9bd3-4292-a501-840527b3ed60","originalAuthorName":"张文祥"},{"authorName":"潘春柳","id":"6955e85b-3951-4fb6-840f-d9d66c4d44af","originalAuthorName":"潘春柳"},{"authorName":"蒋大振","id":"cc528c16-58e1-414d-9823-f47735d500b8","originalAuthorName":"蒋大振"},{"authorName":"吴通好","id":"108da76f-b48e-4045-90db-21cfc0880d07","originalAuthorName":"吴通好"},{"authorName":"唐敖庆","id":"db6d4c75-c92d-4a9d-bfb5-28e615592982","originalAuthorName":"唐敖庆"}],"doi":"","fpage":"140","id":"80e09eb4-070d-4ee2-868d-da7a8eb8873d","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"4ca6c5c8-8f37-45f7-84d0-ad7f58539472","keyword":"愈创木酚","originalKeyword":"愈创木酚"},{"id":"e2cca667-c1cf-4c12-bf3a-29ee59d69f65","keyword":"邻苯二酚","originalKeyword":"邻苯二酚"},{"id":"16edd0f9-260a-46ac-8e4f-d4d3698df9de","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"9644230f-cd2f-470e-896d-777b94ac0e0e","keyword":"氢氧化铝","originalKeyword":"氢氧化铝"},{"id":"4ad77050-d485-4196-8c28-518343cd47ba","keyword":"硅溶胶","originalKeyword":"硅溶胶"},{"id":"14aa303e-1def-45f1-af54-38b5287cab68","keyword":"钛酸丁酯","originalKeyword":"钛酸丁酯"},{"id":"1a29cc73-fe44-4fcb-a138-8489e40824ca","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"8327b127-bb82-4b64-af05-f256a7f7f3a3","keyword":"制备条件","originalKeyword":"制备条件"}],"language":"zh","publisherId":"cuihuaxb200202014","title":"制备条件对AlP1.30Ti0.30Si0.17体系催化剂性能的影响","volume":"23","year":"2002"},{"abstractinfo":"采用可逆加成-断裂链转移(RAFT)聚合技术,通过合成并使用具有双硫酯结构的化合物N-咔唑二硫代甲酸苄基酯(BCBD) RAFT试剂,以N,N-二甲基丙烯酰胺(DMAA)为单体,合成得到了-Mn=9 120,分子量分布窄(PDI<1.1),且链末端带发色团的聚合物PDMAA.PDMAA溶液在为0.1~2 000 mg/L的浓度范围内,在波长为370 nm处的吸收强度与其浓度具有良好的线性关系.PDMAA作为基准物表征超滤膜的截留性能的研究,结果表明,相对于PEG10000,PDMAA可以准确并且简易地表征超滤膜的截留性能,初步说明PDMAA作为基准物质的可行性,也表明RAFT活性聚合是制备性能优异超滤膜截留性能检测用基准物质的可行途径.","authors":[{"authorName":"郭春刚","id":"8f6d5906-ab40-4a08-92db-d59314d397ca","originalAuthorName":"郭春刚"},{"authorName":"潘献辉","id":"8ec956a6-cc09-450c-80ac-db3d80b1183b","originalAuthorName":"潘献辉"},{"authorName":"浩","id":"05f64560-ed56-4848-be77-5940b5c5787a","originalAuthorName":"李浩"},{"authorName":"张建华","id":"94428de7-a7a1-4009-a19e-ce6723efcfa5","originalAuthorName":"张建华"},{"authorName":"徐旭","id":"7457caf9-41f2-4737-a755-446dc308a351","originalAuthorName":"徐旭"},{"authorName":"","id":"ea170796-8785-447b-9112-3bbb922cd4b3","originalAuthorName":"李雪梅"},{"authorName":"吕经烈","id":"1d83bd90-5076-4f34-b695-3bccfc86976b","originalAuthorName":"吕经烈"}],"doi":"","fpage":"60","id":"81d71b96-d779-438c-972a-c9bfc79a35ea","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"2da5d0f5-dd52-4074-aec4-d50de5664e5a","keyword":"基准物","originalKeyword":"基准物"},{"id":"0e44a1c4-178c-4cab-a6be-aeb91c6938d7","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"9873e011-7ad3-47e4-ab4b-42dab3cb9f2d","keyword":"截留性能","originalKeyword":"截留性能"},{"id":"27ea83a9-50a4-4444-813f-360bec3f971a","keyword":"RAFT聚合","originalKeyword":"RAFT聚合"}],"language":"zh","publisherId":"mkxyjs201402012","title":"新型PDMAA基准物用于超滤膜截留性能检测的研究","volume":"34","year":"2014"}],"totalpage":23,"totalrecord":221}