{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"常压条件下,合成高分子量高邻位热塑性酚醛树脂.考察苯酚与多聚甲醛加成缩合反应过程中原料配比、催化剂含量、反应温度因素对热塑性酚醛树脂结构性能的影响,用凝胶渗透色谱仪、核磁共振谱仪对树脂的结构进行分析,测定了树脂的软化点、游离酚含量、凝胶时间、流动距离.制备了软化点126℃、重均分子量11632、邻对位值3.49、游离酚质量分数2.76%、凝胶时间12s、流动距离39mm的高分子量高邻位热塑性酚醛树脂,树脂产率为94%.","authors":[{"authorName":"潘艳平","id":"164b1b3e-a816-4e85-b87f-a5efb0b4df37","originalAuthorName":"潘艳平"},{"authorName":"王银","id":"596aa9fd-0b98-46e3-92cd-ba2fac4f1171","originalAuthorName":"王银"},{"authorName":"任蕊","id":"92e6a726-031b-458b-a1ad-a649284d769f","originalAuthorName":"任蕊"},{"authorName":"党江敏","id":"193b39a3-fed9-41eb-837e-36cfb16176f4","originalAuthorName":"党江敏"},{"authorName":"刘春玲","id":"21d368de-2e4c-4918-9a20-720d4857d52f","originalAuthorName":"刘春玲"},{"authorName":"董文生","id":"4f4954bf-3d6e-43ff-961c-aaf6a96844c2","originalAuthorName":"董文生"}],"doi":"10.3969/j.issn.1001-4381.2013.02.017","fpage":"83","id":"18307cd5-2cf1-4d17-b925-0bd4238f7285","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"9286a9f8-50ae-407d-a9d6-5235b245b1bb","keyword":"酚醛树脂","originalKeyword":"酚醛树脂"},{"id":"54490675-0183-4445-8f5e-f218e5824f47","keyword":"高分子量","originalKeyword":"高分子量"},{"id":"cceec880-c0c4-42a6-97af-d6983b0337b6","keyword":"高邻位","originalKeyword":"高邻位"}],"language":"zh","publisherId":"clgc201302017","title":"高分子量高邻位酚醛树脂的合成与表征","volume":"","year":"2013"},{"abstractinfo":"将热塑性酚醛树脂熔融纺丝, 再在盐酸和甲醛的混合液中进行固化交联反应制备出酚醛纤维,\n研究纤维的物理和化学变化. 结果表明, 采用高浓度甲醛能提高交联基团供应体的浓度,\n也提高了对初生纤维的溶胀作用; 盐酸不仅是交联反应的催化剂, 也能使酚羟基之间、\n酚羟基与亚甲基之间发生热缩聚反应. 对固化反应过程参数的研究表明, 在甲醛浓度18.5\\%,\n酸浓度12\\%和升温速率15.4℃/h时, 在固化反应过程中纤维内部、\n外层的交联反应速度与总的交联反应时间达到最佳匹配,\n可制备出拉伸强度为260 MPa高度均匀交联的酚醛纤维, 在800℃炭化收率达到63\\%.","authors":[{"authorName":"刘春玲","id":"11121373-9c98-4f6b-a5e4-5b46a1c9943f","originalAuthorName":"刘春玲"},{"authorName":"郭全贵","id":"a581c33a-8f75-4d55-8e57-4da0e04b451f","originalAuthorName":"郭全贵"},{"authorName":"史景利","id":"f079fd03-23a2-4b2d-b98f-7669cc613771","originalAuthorName":"史景利"},{"authorName":"刘朗","id":"2158c8e6-dce3-40a6-b440-1b5e31a1138e","originalAuthorName":"刘朗"}],"categoryName":"|","doi":"","fpage":"28","id":"5e362fa7-3fed-47ee-b4f9-4827dde3f695","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"a2ac00fb-b2db-4ee4-a8fa-c584010c53be","keyword":"有机高分子材料","originalKeyword":"有机高分子材料"},{"id":"cf27d4c1-fb52-49e0-a6a3-2aaa938c7435","keyword":"phenolic fibers","originalKeyword":"phenolic fibers"},{"id":"318cd365-47e0-4cb7-b88d-9f98aff61ecf","keyword":"crosslinking reaction","originalKeyword":"crosslinking reaction"}],"language":"zh","publisherId":"1005-3093_2005_1_2","title":"用固化反应法制备本分醛纤维","volume":"19","year":"2005"},{"abstractinfo":"环糊精(CD)修饰的量子点(QDs)作为一种新型的荧光纳米功能材料,针对 QDs 修饰及选择性识别方面,近年来广泛受到研究人员的关注。本文着眼于CD修饰的 QDs 之选择性识别功能,以识别分子种类分类,分为:对生物活性分子的选择性识别,对药物分子的选择性识别和对其他分子的识别。综述了近5年来CD修饰的QDs在上述3方面的代表性研究及应用,并展望了CD修饰的 QDs在未来的发展方向。","authors":[{"authorName":"刘春玲","id":"53d40dcb-9ecd-4cec-a7c7-e25a1b6071cf","originalAuthorName":"刘春玲"},{"authorName":"侯长军","id":"1c5903bf-7284-4177-ae0c-f8c55aec529c","originalAuthorName":"侯长军"},{"authorName":"霍丹群","id":"cc294489-c5ef-43f8-a650-db4169bebb51","originalAuthorName":"霍丹群"},{"authorName":"董家乐","id":"2c5b4019-4d4a-4e9a-b9b5-572305dca94a","originalAuthorName":"董家乐"}],"doi":"10.3969/j.issn.1001-9731.2015.09.002","fpage":"9007","id":"824a660d-4c02-4007-ab91-b67a040f3bd4","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"79cf8cac-1f91-49e1-bd9d-3c82078fda39","keyword":"环糊精","originalKeyword":"环糊精"},{"id":"48112a75-d21c-46b4-8969-5ff14b2b37b4","keyword":"量子点","originalKeyword":"量子点"},{"id":"ea43f692-c236-40d9-9080-a9ec644840a0","keyword":"选择性识别","originalKeyword":"选择性识别"},{"id":"f4ecb79f-a33e-4226-894d-a759d24fc90d","keyword":"生物活性分子","originalKeyword":"生物活性分子"},{"id":"6d0c7d1e-f8af-4b0f-be55-6427b8236074","keyword":"药物分子","originalKeyword":"药物分子"}],"language":"zh","publisherId":"gncl201509002","title":"环糊精修饰的量子点功能材料及其选择性识别研究进展?","volume":"","year":"2015"},{"abstractinfo":"采用亚锡盐和镍盐溶液对铝合金阳极氧化膜电解着黑色的工艺进行了研究,讨论了影响阳极氧化膜的因素,确定满足电解着黑色要求的阳极氧化膜工艺为:165g/L H2SO4,14V,20℃,40min;然后在15g/L SnSO4,40g/L NiSO4溶液中,16℃,13min,15V的交流电压条件下电解着黑色,得到了表面均匀平整、光泽度较高、耐蚀性好的深黑色膜;通过电解液pH的调整使其具有良好的稳定性,而且重现性好.","authors":[{"authorName":"刘春玲","id":"617569a0-12bb-4d17-8b15-3f76be8be605","originalAuthorName":"刘春玲"},{"authorName":"赵春英","id":"1fb1a076-e403-4285-88ad-bd0e529b2f40","originalAuthorName":"赵春英"},{"authorName":"张志仁","id":"838cf047-5526-4333-a21d-56abe727a562","originalAuthorName":"张志仁"},{"authorName":"连长康","id":"6458371d-6790-478d-afca-dc98de490447","originalAuthorName":"连长康"}],"doi":"10.3969/j.issn.1001-3849.2011.06.010","fpage":"33","id":"8baa7f70-a463-4ffe-b275-5923ac685c0e","issue":"6","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"30fe2204-b63c-4065-94b9-8b01bdfc77a9","keyword":"LY12铝合金","originalKeyword":"LY12铝合金"},{"id":"681a1549-9d97-4bb2-9cd8-49e11c748094","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"d7f209af-057a-4b19-8de8-e93c81f8ed21","keyword":"电解着黑色","originalKeyword":"电解着黑色"},{"id":"86168e05-19d3-448c-a250-2020522ef2c8","keyword":"Sn-Ni混合盐","originalKeyword":"Sn-Ni混合盐"}],"language":"zh","publisherId":"ddjs201106010","title":"铝合金在亚锡盐及镍盐溶液中电解着黑色工艺的研究","volume":"33","year":"2011"},{"abstractinfo":"以FR-3型废旧印刷线路板非金属分离物为前躯体,经热解、物理活化/化学活化制备活性炭.研究了热解温度对残碳收率的影响,活化反应条件对活性炭烧蚀率、孔结构的影响.结果表明,随着热解温度的提高残碳收率下降.以600℃热解的残碳为原料,加入煤焦油沥青做粘结剂,经成型、破碎,800℃炭化,再经水蒸气850℃活化3h,可制得比表面积为1 019 m2·g-1、孔容为1.1 cm3·g-1的粒状活性炭;而以600℃热解的残炭为原料,加入KOH,在900℃活化2h,可制得比表面积为3 112 m2 ·g-1、孔容为1.13 cm3 ·g-1的粉状活性炭.","authors":[{"authorName":"柯义虎","id":"32616483-720a-4c78-bbcc-5fd4ae25e398","originalAuthorName":"柯义虎"},{"authorName":"杨二桃","id":"c72a310e-3857-462c-a4e6-704a128b251a","originalAuthorName":"杨二桃"},{"authorName":"刘欣","id":"6c4ad162-5804-4acd-8bfd-f2fdcb4dd9e6","originalAuthorName":"刘欣"},{"authorName":"刘春玲","id":"85a91d80-bf44-4a8a-a6ae-600837e25850","originalAuthorName":"刘春玲"},{"authorName":"董文生","id":"57d79196-6a30-4a97-a818-893f097999d9","originalAuthorName":"董文生"}],"doi":"10.1016/S1872-5805(13)60069-4","fpage":"108","id":"8f50f82c-b983-4332-8a10-3b49edec8b2f","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"99c51d74-6908-4408-b370-ce12d8baf9fa","keyword":"废弃印刷线路板","originalKeyword":"废弃印刷线路板"},{"id":"235db2b8-2e58-4dfd-9993-73bec9f3446f","keyword":"非金属组分","originalKeyword":"非金属组分"},{"id":"279d8853-fefa-4e3d-ab03-2fbe36c3ba6c","keyword":"活性炭","originalKeyword":"活性炭"}],"language":"zh","publisherId":"xxtcl201302005","title":"用废弃印刷线路板非金属组分分离物制备多孔炭","volume":"28","year":"2013"},{"abstractinfo":"采用热塑性酚醛树脂经熔融纺丝和酸催化固化获得酚醛纤维.借助比表面积及孔结构测定仪、IR、TG-MS和XRD等揭示了酚醛纤维在炭化过程中微结构的发展.研究结果表明:在450 ℃~900 ℃的热处理过程中,850 ℃时BET比表面积达到最大值1 040 m2/g;同时,伴随大量分解气的逸出,炭基体内部形成孔道.","authors":[{"authorName":"刘春玲","id":"89762e44-f42e-4433-b3eb-083b3e5f0992","originalAuthorName":"刘春玲"},{"authorName":"郭全贵","id":"bb826cb3-0028-4fac-9bdf-c9b03ec3811a","originalAuthorName":"郭全贵"},{"authorName":"史景利","id":"ad18977c-adba-44f2-82ed-af51154eb9a1","originalAuthorName":"史景利"},{"authorName":"刘朗","id":"bdbd1e8a-f48f-4c17-93ae-521a07f027c6","originalAuthorName":"刘朗"}],"doi":"10.3969/j.issn.1007-8827.2004.02.009","fpage":"124","id":"93e42c22-49b6-4df9-8a89-d8678822d2e5","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"2170d9d8-c154-42ca-a8ac-dab18c5593a5","keyword":"酚醛树脂基炭纤维","originalKeyword":"酚醛树脂基炭纤维"},{"id":"ca247089-044f-4b17-bcba-18f86711c68b","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"xxtcl200402009","title":"酚醛纤维在热处理过程中微结构的变化","volume":"19","year":"2004"},{"abstractinfo":"以聚氯乙烯(PVC)改性酚醛树脂为原料,采用熔融纺丝法制备出PVC阻燃酚醛纤维.通过SEM、DMA、TG、Fr-IR等分析手段,对PVC阻燃酚醛纤维的结构和性能进行了研究.与纯酚醛纤维相比,PVC阻燃纤维的韧性和阻燃性提高,但其热稳定性和残碳率稍有降低.当PVC含量为0.5wt%时,其拉伸强度从123 MPa提高至150 MPa,极限氧指数从32.1%提高至38.5%,在空气气氛下600℃的残碳率从87.4%降至70.9%,在氮气气氛下1 000℃的残碳率从62.8%降至59.7%.","authors":[{"authorName":"党江敏","id":"90a268a0-df20-40c8-b24f-642ea106ec1c","originalAuthorName":"党江敏"},{"authorName":"任蕊","id":"87cdb9bc-2089-4bfb-853e-882457de8f45","originalAuthorName":"任蕊"},{"authorName":"刘春玲","id":"8f276f70-7026-42bc-8747-071e0048b5d6","originalAuthorName":"刘春玲"},{"authorName":"董文生","id":"56271079-cc51-4812-9ba8-00bc178815da","originalAuthorName":"董文生"}],"doi":"10.3969/j.issn.1007-2330.2011.05.007","fpage":"27","id":"d5defc9c-4433-415b-b4b0-06719acda04b","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"97b766c6-6514-4499-91c2-fc8363230415","keyword":"PVC阻燃酚醛纤维","originalKeyword":"PVC阻燃酚醛纤维"},{"id":"9d5534e8-c83c-46ff-8e78-12371bf76425","keyword":"PVC","originalKeyword":"PVC"},{"id":"8b9d13ef-f758-4751-958a-e52baec8034d","keyword":"阻燃性","originalKeyword":"阻燃性"},{"id":"f3d73b29-5bbb-44ce-bf24-e71631cd099d","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"yhclgy201105007","title":"PVC阻燃酚醛纤维的制备及其性能","volume":"41","year":"2011"},{"abstractinfo":"在常压条件下,合成了高邻位热塑性酚醛树脂,并考察了反应过程中催化剂种类、反应原料配比等因素对树脂性能的影响。通过软化点测试仪、核磁共振谱仪和热分析(TG-DSC)等研究了树脂合成过程中各制备参数对树脂结构和固化性能影响。结果表明:选择醋酸锌做邻位加成的第一催化剂,有机酸草酸做缩聚反应的第二催化剂,m(P)/m(F)比为1:0.7时合成酚醛树脂的O/P值较高,凝胶时间较短,固化反应更易进行。","authors":[{"authorName":"殷勇刚","id":"1508be34-3f34-4b5a-9eed-f0f21588f386","originalAuthorName":"殷勇刚"},{"authorName":"任蕊","id":"6f863b74-0806-4e2d-93b3-32fd9a640750","originalAuthorName":"任蕊"},{"authorName":"刘春玲","id":"ac5e2764-5c8e-4960-bc49-283f94358c22","originalAuthorName":"刘春玲"},{"authorName":"董文生","id":"2d595a69-e2fc-4324-aa7c-53a72554ac25","originalAuthorName":"董文生"}],"doi":"","fpage":"9","id":"ebd84ed5-0ef4-4c2e-8cf8-ab2435662f1b","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a9aa8e12-775a-4290-9f51-7f2a2ba941eb","keyword":"高邻位酚醛树脂","originalKeyword":"高邻位酚醛树脂"},{"id":"df2953f2-4b15-4a97-83f4-7ee1df10a891","keyword":"固化性能","originalKeyword":"固化性能"}],"language":"zh","publisherId":"gfzclkxygc201204003","title":"高邻位热塑性酚醛树脂的合成及固化性能","volume":"28","year":"2012"},{"abstractinfo":"将热塑性酚醛树脂熔融纺丝,再在盐酸和甲醛的混合液中进行固化交联反应制备出酚醛纤维,研究纤维的物理和化学变化.结果表明,采用高浓度甲醛能提高交联基团供应体的浓度,也提高了对初生纤维的溶胀作用;盐酸不仅是交联反应的催化剂,也能使酚羟基之间、酚羟基与亚甲基之间发生热缩聚反应.对固化反应过程参数的研究表明,在甲醛浓度18.5%,酸浓度12%和升温速率15.4℃/h时,在固化反应过程中纤维内部、外层的交联反应速度与总的交联反应时间达到最佳匹配,可制备出拉伸强度为260 MPa高度均匀交联的酚醛纤维,在800℃炭化收率达到63%.","authors":[{"authorName":"刘春玲","id":"cfbcf6fc-de9b-427c-a7e9-2b7007b3822e","originalAuthorName":"刘春玲"},{"authorName":"郭全贵","id":"15e9dcdb-c100-468d-8cfb-56c7cee5677c","originalAuthorName":"郭全贵"},{"authorName":"史景利","id":"22fc31f9-7114-4128-9eac-887f88efaf18","originalAuthorName":"史景利"},{"authorName":"刘朗","id":"5d2adc08-6abf-4ea9-a707-61af9cb8db35","originalAuthorName":"刘朗"}],"doi":"10.3321/j.issn:1005-3093.2005.01.005","fpage":"28","id":"df657f20-01f2-466f-86e4-b802bd1bd4a4","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"41f82e2e-741d-488e-bb76-750601dd43b0","keyword":"有机高分子材料","originalKeyword":"有机高分子材料"},{"id":"bb91f87f-cf58-42d8-a3c0-ffa1009e31bf","keyword":"酚醛纤维","originalKeyword":"酚醛纤维"},{"id":"ceeace30-76de-4a43-b997-9e8614da1335","keyword":"交联反应","originalKeyword":"交联反应"}],"language":"zh","publisherId":"clyjxb200501005","title":"用固化反应法制备酚醛纤维","volume":"19","year":"2005"},{"abstractinfo":"通过控制固化条件获得具有不同交联程度的酚醛纤维,考察其交联程度对经900℃炭化后所获炭纤维结构和性能的影响.结果表明,具有高度交联化酚醛纤维,交联程度低的分子相对较少,热解过程中低分子逸出量少,形成的孔道也相对较少,参与交联缩合的分子相对较多,有利于六方晶系炭的形成.由此导致适当温度下炭化所获炭纤维炭化收率高、孔容小、机械拉伸强度和电导率相应较高.","authors":[{"authorName":"刘春玲","id":"55ebb1b9-5016-4612-b51c-807b7c4108d2","originalAuthorName":"刘春玲"},{"authorName":"郭全贵","id":"b2b019b3-5ff5-44ec-a3df-5ff6dca494a0","originalAuthorName":"郭全贵"},{"authorName":"史景利","id":"8b8a2aeb-5cd3-4ebd-be15-5075418d2b10","originalAuthorName":"史景利"},{"authorName":"刘朗","id":"904fdbf2-36dd-4314-a320-7bb329ee3cee","originalAuthorName":"刘朗"}],"doi":"10.3321/j.issn:1005-3093.2006.03.005","fpage":"245","id":"c1660366-2169-43a9-a4ad-7f8c88e02ae3","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"321f8c8b-e544-4b31-8a66-30e93a070c97","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"8511499b-83cf-405e-872d-75a7f0cb1036","keyword":"酚醛纤维","originalKeyword":"酚醛纤维"},{"id":"deaf501e-2764-4f1d-af0c-09fa275876c2","keyword":"交联程度","originalKeyword":"交联程度"},{"id":"186565cf-c596-46d7-8bb5-e634aedd1fe8","keyword":"酚醛基炭纤维","originalKeyword":"酚醛基炭纤维"},{"id":"c275468c-dd25-44a4-a7bf-7e39980ecf58","keyword":"微结构和性能","originalKeyword":"微结构和性能"}],"language":"zh","publisherId":"clyjxb200603005","title":"酚醛纤维交联程度对炭纤维结构和性能的影响","volume":"20","year":"2006"}],"totalpage":8,"totalrecord":75}