{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以超高分子量聚乙烯(UHMW-PE)专用单螺杆挤出机,研究和分析了UHMW-PE在单螺杆挤出过程中的熔融输送机理。结果表明,UHMW-PE在螺杆中为典型的塞流输送。","authors":[{"authorName":"","id":"466aa1dd-3ad2-436a-8f90-aee2f412d757","originalAuthorName":"何继敏"},{"authorName":"薛平","id":"7370c198-2f7a-4a57-814f-4b0d6e547ea5","originalAuthorName":"薛平"},{"authorName":"亚东","id":"1c0abad4-2f45-48f6-8d26-f15bf88e6d42","originalAuthorName":"何亚东"},{"authorName":"朱复华","id":"9993c1fd-d735-4076-992c-b15c6d017074","originalAuthorName":"朱复华"}],"doi":"","fpage":"72","id":"8a503615-685a-49b9-a330-46830b8b7a6f","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"580f5943-2b4e-47b3-82b3-9f1a879b8d45","keyword":"超高分子量聚乙烯","originalKeyword":"超高分子量聚乙烯"},{"id":"1999577b-7ff3-4a08-b632-8758bff4bd6d","keyword":"单螺杆挤出","originalKeyword":"单螺杆挤出"},{"id":"7c6d869b-d9bd-415f-863e-6c3bd46d9352","keyword":"输送","originalKeyword":"输送"},{"id":"4858567e-8254-4dd4-b40b-6c3636bc6ae2","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"gfzclkxygc200101018","title":"超高分子量聚乙烯单螺杆挤出的输送机理研究","volume":"17","year":"2001"},{"abstractinfo":"2011年8日下午,利基金2011年度颁奖大会在京举行。我国高性能计算机领域杰出科学家、国防科技大学杨学军教授荣获“科学与技术成就奖”,丁伟岳等35人获“科学与技术进步奖”,吴朝晖等15人获“科学与技术创新奖”。中共中央政治局委员、国务委员刘延东向大会发来贺信,全国人大常委会副委员长桑国卫、全国政协副主席万钢出席会议并为获奖代表颁奖。利基金评选委员会主任朱丽兰向大会作工作报告。","authors":[],"doi":"","fpage":"45","id":"f37cc6ef-fc18-4992-bf12-87f4f2454c06","issue":"11","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"fb622aa9-b734-4f1c-b64e-92e6a4a88f1a","keyword":"科学家","originalKeyword":"科学家"},{"id":"6423a5d0-9de7-4a39-88fa-566072fd7e5d","keyword":"基金","originalKeyword":"基金"},{"id":"e733528d-7ae2-4e1f-b51c-af533f427e80","keyword":"中共中央政治局","originalKeyword":"中共中央政治局"},{"id":"8f9e518a-8e11-4218-a7b3-3c4611f804f7","keyword":"全国人大常委会","originalKeyword":"全国人大常委会"},{"id":"cddcb0f8-f641-4940-8dfd-f61da6f88936","keyword":"突出","originalKeyword":"突出"},{"id":"9ec15a38-d48c-406e-bf20-bd087ed406a0","keyword":"国防科技大学","originalKeyword":"国防科技大学"},{"id":"23458c7c-6c4e-4e81-b7cd-71807927d295","keyword":"计算机领域","originalKeyword":"计算机领域"},{"id":"b6a04d71-3662-490c-8d43-bef3fa71c865","keyword":"科学与技术","originalKeyword":"科学与技术"}],"language":"zh","publisherId":"zgcljz201111011","title":"2011年度利基金获奖科学家年轻化突出","volume":"30","year":"2011"},{"abstractinfo":"用电化学测试手段分别测定了20钢、2Cr13、QAl 9-2、QAl 10-3-1.5和QAl 10-4-4等5种材料在NaCl溶液中的腐蚀电位及与QAl 9-2偶接时的电偶腐蚀电流的变化,并对测试后各试样的腐蚀状态进行了观察.结果表明,铝青铜材料的抗腐蚀性比钢好.其中QAl 10-4-4的腐蚀电位最为偏正,但它与QAl 9-2配副会对QAl 9-2产生较大的阳极电偶腐蚀;QAl 9-2和QAl 10-3-1.5材料与QAl 9-2配副均有较好的耐电偶腐蚀性能.研究结果对动器壳体材料的选择具有指导意义.","authors":[{"authorName":"孙瑜珉","id":"51e99317-d6bf-431c-9a6f-c3d6f4585354","originalAuthorName":"孙瑜珉"},{"authorName":"王艳滨","id":"c2914604-7d17-4b6a-a81d-8cc5caf4d1cc","originalAuthorName":"王艳滨"},{"authorName":"翟文杰","id":"d72a5d12-baa0-4d59-8f4d-a3da259c0a08","originalAuthorName":"翟文杰"}],"doi":"10.3969/j.issn.1003-1545.2003.02.008","fpage":"22","id":"99ca24e2-000b-494d-b1a3-2134704d4fce","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"cd50c162-3395-4884-8f0c-416f8e837441","keyword":"电化学","originalKeyword":"电化学"},{"id":"b3ff1209-0319-4d41-92df-0b3d22d367b8","keyword":"腐蚀电位","originalKeyword":"腐蚀电位"},{"id":"0f5918e1-888f-46b7-b83d-8685b3cd2270","keyword":"腐蚀电流","originalKeyword":"腐蚀电流"}],"language":"zh","publisherId":"clkfyyy200302008","title":"船用动器壳体材料的腐蚀性能分析","volume":"18","year":"2003"},{"abstractinfo":"从气材料种类、制备方法、改善气材料缺陷的手段等方面介绍了气材料的研究进展,论述了气材料研究中的新动向,展望了它的未来发展.","authors":[{"authorName":"宁文生","id":"553936c1-1c1d-42fb-9a25-7020d183921a","originalAuthorName":"宁文生"},{"authorName":"杜丕一","id":"52438fd4-1b44-476c-b712-bac40f72fe09","originalAuthorName":"杜丕一"},{"authorName":"翁文剑","id":"fc05dbbb-83d1-4522-9c05-2e56a59b6a3c","originalAuthorName":"翁文剑"},{"authorName":"韩高荣","id":"d74d1271-4866-4734-b308-37b7be1207f9","originalAuthorName":"韩高荣"},{"authorName":"沈鸽","id":"fa231856-5991-4d74-8f66-8b97f535cb61","originalAuthorName":"沈鸽"}],"doi":"","fpage":"45","id":"4a1acfec-86b5-499d-b87a-c487888103dd","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0bbed941-f068-4878-9452-49e76a5cba8e","keyword":"气材料","originalKeyword":"气敏材料"},{"id":"d8af4852-bbd5-438f-87e5-902bea0c6750","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"257387eb-09ee-44fd-a55f-425891831ad3","keyword":"改善性能","originalKeyword":"改善性能"},{"id":"67c82807-d384-4a08-abd4-868288abf170","keyword":"新动向","originalKeyword":"新动向"}],"language":"zh","publisherId":"cldb200208015","title":"气材料的研究进展","volume":"16","year":"2002"},{"abstractinfo":"综合介绍了气传感器的种类及其近期的发展以及MEMS技术对气传感器的推动,并着重对声表面波(SAW)气传感器及石英微天平(QCM)气传感器的结构、工作原理和涂层材料作了详细的介绍.","authors":[{"authorName":"陈长庆","id":"544b3d41-d3a8-490b-a760-317d0a4d4ee9","originalAuthorName":"陈长庆"},{"authorName":"胡明","id":"b95ec166-349a-41d8-af5d-41b12bd371ff","originalAuthorName":"胡明"},{"authorName":"吴霞宛","id":"995de66b-eb72-47b4-a4f3-a73c1ad990c3","originalAuthorName":"吴霞宛"}],"doi":"","fpage":"33","id":"00c35350-79d6-408a-b12a-8337f8eb2a8e","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2a1e0f87-c5a8-4d42-b427-d6df34e988de","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"9b8690e4-6f23-48a9-88e4-944a840b3266","keyword":"声表面波","originalKeyword":"声表面波"},{"id":"12f60cf2-ce2f-44e9-9b9e-7263da516fb7","keyword":"石英微天平","originalKeyword":"石英微天平"},{"id":"fbfe7497-b89d-4634-b780-fed7ece94139","keyword":"气传感器","originalKeyword":"气敏传感器"}],"language":"zh","publisherId":"cldb200301011","title":"气传感器的发展","volume":"17","year":"2003"},{"abstractinfo":"","authors":[{"authorName":"王泽汉","id":"90995030-0492-4dfc-ae34-a85c847939ff","originalAuthorName":"王泽汉"},{"authorName":"刘云清","id":"e256a612-0d3b-4d33-b7ab-9915f0ddb2a6","originalAuthorName":"刘云清"}],"doi":"10.3969/j.issn.1000-6826.2015.03.01","fpage":"1","id":"fc012ed0-929e-4ae2-b19f-83ebee168ade","issue":"3","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"3eea2cc1-8c75-4b8c-bc6d-059965816455","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj201503001","title":"安瑞:熔铁冶金,铸造钢铁脊梁","volume":"","year":"2015"},{"abstractinfo":"随着MEMS技术的飞速发展,各种MEMS器件和系统相继问世,MEMS气传感器是其中之一.本文重点介绍了7种MEMS气传感器.","authors":[{"authorName":"惠春","id":"2093e039-4599-449b-ba40-1d3a00b8ec8a","originalAuthorName":"惠春"},{"authorName":"徐爱兰","id":"1c32796d-3a0f-405b-b04e-c39faa21c3fc","originalAuthorName":"徐爱兰"},{"authorName":"徐毓龙","id":"6a4b9e24-0b3b-4c77-828b-d0a1a89821cc","originalAuthorName":"徐毓龙"}],"doi":"","fpage":"133","id":"e6fd77c8-84b1-418a-aa19-896a2cae3a1f","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a4d9ceef-3d83-4a72-846c-f8cd4b857181","keyword":"MEMS技术","originalKeyword":"MEMS技术"},{"id":"83668225-6f24-4b12-a1af-689eb54a8472","keyword":"牺牲层技术","originalKeyword":"牺牲层技术"},{"id":"68c891df-d440-403d-b44d-a326280b4fb2","keyword":"MEMS气传感器","originalKeyword":"MEMS气敏传感器"}],"language":"zh","publisherId":"gncl200302006","title":"MEMS气传感器","volume":"34","year":"2003"},{"abstractinfo":"通过改变环境温度,温吸附材料可以实现对蛋白质、染料及其他物质的吸附、脱附和控制释放,而无需添加其他试剂,降低了这些过程造成的污染.因此温吸附材料作为智能响应材料中的重要组成部分受到了越来越多科研工作者的关注.聚(N-异丙基丙烯酰胺)(PNIPAM)是现在被研究得最多的温材料,它的相转变温度(LCST)为32℃,许多复合的温吸附材料的LCST小于40℃,这使得温吸附材料在蛋白质的活性分离方面有着巨大的应用潜力.主要综述了温材料在吸附方面的最新研究进展,并对吸附机理进行了总结分析,同时对温吸附的发展方向进行了展望.","authors":[{"authorName":"胡耀强","id":"414dbd33-1cbf-48d5-ac78-b7b8da6b482d","originalAuthorName":"胡耀强"},{"authorName":"权朝明","id":"fa538bd8-dbfc-4edd-b84d-aa11bbde7e03","originalAuthorName":"权朝明"},{"authorName":"刘海宁","id":"096b3d08-b4ef-4fea-8481-542f3d3e6abc","originalAuthorName":"刘海宁"},{"authorName":"吴志坚","id":"2701df51-3374-4ca8-9f10-2162def17aca","originalAuthorName":"吴志坚"},{"authorName":"叶秀深","id":"1f55361f-84bd-440f-bcd7-0a74a77eefb4","originalAuthorName":"叶秀深"}],"doi":"10.11896/j.issn.1005-023X.2016.011.021","fpage":"126","id":"3f92f9ba-f3ed-4d9c-bb4b-db102f239b04","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7acdeb6b-b9e4-490d-a3b7-22d6710749b8","keyword":"温材料","originalKeyword":"温敏材料"},{"id":"8067cfe1-ffb6-44c1-bdf3-6d57fb31ca09","keyword":"吸附","originalKeyword":"吸附"},{"id":"7e7578ad-5c10-4f21-8156-e42ed8080f10","keyword":"染料","originalKeyword":"染料"},{"id":"4250a1a9-8f3c-4726-b157-836ace23d662","keyword":"蛋白质","originalKeyword":"蛋白质"}],"language":"zh","publisherId":"cldb201611021","title":"温材料吸附研究进展","volume":"30","year":"2016"},{"abstractinfo":"采用溶胶-凝胶工艺制备了用于汽车新型传感器的氧薄膜材料,包括过渡金属氧化物(MoOx、TiOx、CrOx)、钙钛矿型(SrTiO3/LaNiO3、LaNiO3、LaCrO3)和类钙钛矿型(La1-xMxNiO4)纳米粒子薄膜.结果表明,与传统氧传感器用的ZrO2、TiO2半导体材料相比,这三类材料的阻温系数小,敏感度高,响应速度快","authors":[{"authorName":"徐明霞","id":"57680372-a771-4fd6-b5b5-620cb4d4fcf0","originalAuthorName":"徐明霞"},{"authorName":"刘丽月","id":"e6f2c50f-dff2-4c55-b4c4-233d866c8f9e","originalAuthorName":"刘丽月"},{"authorName":"郑嘹赢","id":"b3d5e626-0561-4329-a838-6a97f9b88352","originalAuthorName":"郑嘹赢"},{"authorName":"樊丽莹","id":"b2e43768-4192-44c4-ac10-ddc9db6bb05c","originalAuthorName":"樊丽莹"},{"authorName":"徐廷献","id":"46e7665b-21bc-4fff-b25c-9b0fea984bb6","originalAuthorName":"徐廷献"}],"doi":"10.3321/j.issn:1005-3093.2001.01.003","fpage":"17","id":"5c53f44d-8877-44bc-b221-3842dc47a673","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"0f6f8cd7-9667-4cfe-af7f-a92defc1d4b8","keyword":"薄膜材料","originalKeyword":"薄膜材料"},{"id":"67cd8bdc-9764-4a73-8b26-b61103bd656f","keyword":"氧特性","originalKeyword":"氧敏特性"},{"id":"e8776be4-c079-46a2-8ab5-04efd3bb7b48","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"85ddaece-2a66-4089-b692-9efb14a1528d","keyword":"溶胶","originalKeyword":"溶胶"},{"id":"5667a056-c0c6-4f4d-a742-26c2537e0fdc","keyword":"-凝胶法","originalKeyword":"-凝胶法"}],"language":"zh","publisherId":"clyjxb200101003","title":"新型氧薄膜材料","volume":"15","year":"2001"},{"abstractinfo":"对用纳米粉体制备的ZnO压生坯进行了微波烧结,通过XRD、SEM分析和电性能测试,与普通烧结比较,微波烧结可使ZnO压材料快速成瓷,显著缩短烧结时间;在相同晶粒尺寸下,微波烧结温度更低,瓷体更致密;并能获得较好电性能.微波烧结为ZnO压陶瓷材料制备提供了一条新的、高效节能的途径.","authors":[{"authorName":"康雪雅","id":"e4dca377-780c-497a-8936-e452b853e9d6","originalAuthorName":"康雪雅"},{"authorName":"常爱民","id":"c964ac1f-d5a7-4473-a764-926860c84324","originalAuthorName":"常爱民"},{"authorName":"韩英","id":"ff0d77a4-7b53-4b2b-bc1d-7b9ae77d256e","originalAuthorName":"韩英"},{"authorName":"王天雕","id":"a5b959e1-9bd6-403c-aebc-df11685596d2","originalAuthorName":"王天雕"},{"authorName":"陶明德","id":"c5febb01-aad4-4222-95be-77c97c06cfb9","originalAuthorName":"陶明德"},{"authorName":"涂铭旌","id":"0d7636e5-ae29-4805-850a-839c95e8b27d","originalAuthorName":"涂铭旌"}],"categoryName":"|","doi":"","fpage":"751","id":"66f2ea3a-61d2-4a19-ba05-58cee9316877","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9d202747-edf2-41b6-a9db-333108397ed3","keyword":"微波烧结","originalKeyword":"微波烧结"},{"id":"dd1b7b24-f5a1-4450-a152-65f4f37266de","keyword":"null","originalKeyword":"null"},{"id":"23a49c63-cb4c-417a-b6e6-e23aa5139426","keyword":"null","originalKeyword":"null"},{"id":"abd88883-ec41-402d-84df-5506bf6f4304","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_5_17","title":"ZnO压陶瓷的微波烧结","volume":"13","year":"1998"}],"totalpage":180,"totalrecord":1798}