{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"Pd—Eu合金在氧化性气氛中退火时,活性溶质Eu发生氧化,形成稳定氧化物Eu_2O_3氧化是由扩散机制控制的Eu_2O_3形核长大过程:氧通过体扩散和晶界扩散进入合金,Eu由内层扩散到外层研究了氧化动力学对于圆截面试样,氧化层深度(ξ)与氧化时间(t)满足公式ξ=Kt~n当温度800—900℃时,n=0.5,符合抛物线规律;当温度高达1200℃时,n=0.75,偏离抛物线规律PdEu0.56合金在800—1200℃氧化激活能为150kJ/mol","authors":[{"authorName":"宁远涛","id":"3109721a-1980-4bbd-94cd-f8c55b64b01d","originalAuthorName":"宁远涛"},{"authorName":"文飞","id":"2349c3b6-42b4-4603-8d48-0aba47d67139","originalAuthorName":"文飞"},{"authorName":"赵怀志","id":"57f57677-9fc5-40b6-8bb4-3bcac343e24c","originalAuthorName":"赵怀志"},{"authorName":"邓德国","id":"dcce526d-7fa7-4ce7-ab72-ce3e55b70cb0","originalAuthorName":"邓德国"}],"categoryName":"|","doi":"","fpage":"65","id":"a9b4eaf9-18b8-4d2d-ac61-430b903cd8a2","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"e9a4cc9b-009a-4317-b3b8-0bf801576367","keyword":"氧化","originalKeyword":"内氧化"},{"id":"ddd466ba-09d9-41e1-93c4-382dc14e7bfb","keyword":"Eu additive","originalKeyword":"Eu additive"},{"id":"08abb14b-9dfc-4058-8a54-4ece36380b6c","keyword":"internal oxidation","originalKeyword":"internal oxidation"}],"language":"zh","publisherId":"0412-1961_1993_9_9","title":"Pd—Eu合金氧化","volume":"29","year":"1993"},{"abstractinfo":"通过循环氧化试验和SEM观察,研究了氧化对扩散型热浸渗铝钢循环氧化性能的影响.结果表明,经高温扩散处理后,热浸镀铝钢扩散层的次外层和过渡层之间均有空洞产生.随扩散温度升高和时间延长,次外层和过渡层之间空洞逐步聚集连接成平行于表面的波浪线状空洞带,使高温氧化过程中扩散层产生了氧化,氧化动力学曲线偏离平方抛物线规律而呈现抛物线-直线规律.因此,渗铝钢的长期氧化速度同时受扩散层氧化和外氧化的控制.探讨了扩散层空洞带和氧化的形成机理.","authors":[{"authorName":"张伟","id":"1d581f05-482f-4de1-b7dc-1e7cdb07a625","originalAuthorName":"张伟"},{"authorName":"徐国辉","id":"e192334d-d764-40ef-9041-815b348b4333","originalAuthorName":"徐国辉"},{"authorName":"郭献军","id":"0209a6be-7847-42f9-bb23-4df787b60bd5","originalAuthorName":"郭献军"}],"doi":"10.3969/j.issn.1002-6495.2005.04.003","fpage":"227","id":"9af49cb4-f8b3-4b2c-a0b2-31121b852d96","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"9b9d1e5d-42e2-4b90-bc38-96cc2d0530a2","keyword":"孔洞带","originalKeyword":"孔洞带"},{"id":"960462c9-e266-4961-9566-dd7a91c3b0c4","keyword":"氧化","originalKeyword":"内氧化"},{"id":"e38bca30-d649-4ba0-8232-3929f9241e4a","keyword":"氧化动力学","originalKeyword":"氧化动力学"},{"id":"2f645077-2106-4f76-af0a-99995f5d8439","keyword":"渗铝钢","originalKeyword":"渗铝钢"}],"language":"zh","publisherId":"fskxyfhjs200504003","title":"氧化对渗铝钢氧化动力学的影响","volume":"17","year":"2005"},{"abstractinfo":"研究了Ag-Sn合金氧化热力学与恒温氧化行为.热力学计算结果表明,Ag-Sn合金氧化在热力学上是可行的,并绘制了合金氧化热力学区位图.经氧化实验获得Ag-Sn合金恒温氧化行为曲线.Ag-Sn合金快速氧化的温度区间为550℃至800℃.随氧化温度的升高,合金的氧化更为彻底并逐步趋于平稳.实验所得AgSnO2材料中,SnO2颗粒弥散分布于Ag基体中.在内氧化过程中,氧的扩散使合金内部发生氧化,并生成呈网状排布的氧化物.","authors":[{"authorName":"王松","id":"561f65a2-5fd3-457a-9a17-227f6ea5ee7f","originalAuthorName":"王松"},{"authorName":"郑婷婷","id":"0b00b1fc-4fa3-4147-8eca-76ca740b4114","originalAuthorName":"郑婷婷"},{"authorName":"谢明","id":"f35bce72-017a-40ae-ab33-854104b1054b","originalAuthorName":"谢明"},{"authorName":"王亚雄","id":"0050467a-6c01-4689-a08e-49d05c1dc703","originalAuthorName":"王亚雄"},{"authorName":"张吉明","id":"b397043c-eec1-4145-b0ca-9262f54d32ba","originalAuthorName":"张吉明"}],"doi":"","fpage":"796","id":"4d17f090-ace4-43ec-9b23-76660f602562","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"97402a1b-f636-4bc6-8bd5-b063904cca58","keyword":"AgSnO2","originalKeyword":"AgSnO2"},{"id":"db975234-68c6-4a61-ac95-6c58f17798bc","keyword":"氧化","originalKeyword":"内氧化"},{"id":"599f9746-0e39-4439-82f9-56f43aefedbd","keyword":"热力学","originalKeyword":"热力学"},{"id":"3bae98b0-2fa6-42ae-94c2-c0bec73d88de","keyword":"恒温氧化行为","originalKeyword":"恒温氧化行为"},{"id":"2e1329ad-2881-4e3d-867d-c61e44cc0c64","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"xyjsclygc201404006","title":"AgSnO2电接触材料氧化热力学与恒温氧化行为","volume":"43","year":"2014"},{"abstractinfo":"采用氧化法制备ZrO2弥散强化Pt-Ir-Zr高温材料.探讨了氧化热力学条件,并利用SEM分析氧化时间对形貌的影响,结合抗拉强度的变化确定最优的氧化时间.结果表明:在实验条件下会发生Ir、Zr的氧化.Zr比Ir氧化所需的氧分压小.随着氧化时间的增加,晶粒长大.直到40 h后,组织达到稳定.抗拉强度随着氧化时间的增加呈指数降低.氧化最优时间为40 h.","authors":[{"authorName":"康菲菲","id":"f243b3c3-fcf8-481b-968d-4898fa366179","originalAuthorName":"康菲菲"},{"authorName":"耿永红","id":"1ce0b2d3-da73-433c-8f3a-3d7588cbf172","originalAuthorName":"耿永红"},{"authorName":"陈松","id":"6a0d1b3e-0ce5-425c-b013-db8e56c0b8e3","originalAuthorName":"陈松"},{"authorName":"管伟明","id":"1f4054b9-dae9-40f6-a0bd-2871964a4873","originalAuthorName":"管伟明"},{"authorName":"张昆华","id":"cbe63088-8fcd-463c-9dab-3c46e85d7eed","originalAuthorName":"张昆华"}],"doi":"","fpage":"585","id":"c413f2ca-b545-40be-8c5f-4d3ae545dcec","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d713a22a-3dd1-4493-8247-2302147921c4","keyword":"Pt-Ir-Zr合金","originalKeyword":"Pt-Ir-Zr合金"},{"id":"539b989f-a653-4454-9aac-2d67470aaa49","keyword":"氧化","originalKeyword":"内氧化"},{"id":"de28e6f5-f58c-432b-b110-2b53bd8addd1","keyword":"热力学","originalKeyword":"热力学"},{"id":"bce30d62-65eb-417e-a769-d3ff0b3cf62a","keyword":"弥散强化","originalKeyword":"弥散强化"}],"language":"zh","publisherId":"xyjsclygc201104005","title":"Pt-Ir-Zr高温合金氧化工艺的研究","volume":"40","year":"2011"},{"abstractinfo":"采用逐步氧化增重法,研究了AgSn合金粉末中低温氧化的动力学行为,结果表明其内氧化动力学曲线明显不同于高温氧化的抛物线定律,中低温氧化的各个不同阶段的氧化机制符合不同的规律,区别于高温氧化,本实验合金粉末的中低温氧化过程动力学由化学反应和产物层扩散相互作用控制.","authors":[{"authorName":"江珍雅","id":"adcfe094-7559-4893-8e53-529ed69e4463","originalAuthorName":"江珍雅"},{"authorName":"陈敬超","id":"11224aeb-3700-4c6d-88b9-f6c899252a82","originalAuthorName":"陈敬超"}],"doi":"10.3969/j.issn.1004-0676.2006.02.005","fpage":"22","id":"14070174-46f8-49d9-b3fb-a97b937db4a3","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"afc53af9-1f43-4277-b485-fb4ee60731e6","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"05971479-b396-4327-a1a0-97c61ab8b697","keyword":"AgSn合金粉末","originalKeyword":"AgSn合金粉末"},{"id":"21285044-f1eb-4cf9-bf9f-f3e93a21b8ab","keyword":"氧化","originalKeyword":"内氧化"},{"id":"0e9456df-ebe8-45dc-b815-d4ecb536a685","keyword":"非抛物线定律","originalKeyword":"非抛物线定律"}],"language":"zh","publisherId":"gjs200602005","title":"AgSn合金粉末非抛物线性氧化研究","volume":"27","year":"2006"},{"abstractinfo":"以 Cu2O为氧化剂,在氩气保护下对不同 w(Al)的 Cu-Al合金表面进行弥散强化(氧化温度为 1 123~ 1 273 K,保温时间 10~ 96 h),并对内氧化层的组织形貌进行了研究.结果表明, w(Al)的多少直接影响氧化层的厚度、组织形貌及硬度和导电率, Cu-Al合金的氧化动力学曲线呈抛物线变化规律.","authors":[{"authorName":"李红霞","id":"e887365d-c67c-45f3-bab5-f1eab55f304b","originalAuthorName":"李红霞"},{"authorName":"田保红","id":"9cde49a7-fd88-4ca4-8e94-bb269b9bae72","originalAuthorName":"田保红"},{"authorName":"宋克兴","id":"715e02f2-89c7-4482-bdc2-e44f51fa89dd","originalAuthorName":"宋克兴"},{"authorName":"刘平","id":"1e9a5952-beaf-41bf-9603-09c9fc408fed","originalAuthorName":"刘平"}],"doi":"10.3969/j.issn.1004-244X.2005.02.014","fpage":"44","id":"4e7395e2-75d6-4502-b607-f97ccbcadfbc","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"618ecb36-dfeb-4bf1-bd03-e202109e437d","keyword":"弥散强化","originalKeyword":"弥散强化"},{"id":"71dba19e-7c65-4e47-85e9-fdb6e9e7c077","keyword":"Cu-Al合金","originalKeyword":"Cu-Al合金"},{"id":"13dff1e8-4a89-4bfd-b3b9-eaa7b8e6a5b4","keyword":"氧化","originalKeyword":"内氧化"},{"id":"5a82373e-1584-433c-afee-b27ed9b99404","keyword":"逆扩散","originalKeyword":"逆扩散"}],"language":"zh","publisherId":"bqclkxygc200502014","title":"氧化法制备表面弥散强化铜合金的组织与性能","volume":"28","year":"2005"},{"abstractinfo":"对Cu-0.3Al合金粉末进行了氧化工艺及其动力学研究.研究表明:在不同氧化温度条件下,初期(15min)合金的电导率和硬度均显著提高,随氧化时间延长,电导率和硬度略有提高,一定时间后电导率趋于不变,硬度甚至略有下降,且温度越高硬度达到峰值所需的时间越短.900℃×1h氧化条件下合金的性能达到最佳,电导率值达到84.6% IACS,硬度高达HV 130.氧化的温度对内氧化析出物A12O3的形核和长大有较大影响,随着氧化温度的升高和氧化过程的进行,A12O3粒子的尺寸有所长大,部分粒子发生γ相向粗大的α相的转变.","authors":[{"authorName":"程建奕","id":"0549745d-e3b8-4537-ae2c-d1f03d9d2c3f","originalAuthorName":"程建奕"},{"authorName":"敖学文","id":"6ce3b571-5360-487c-95f8-a8ae5200f7ae","originalAuthorName":"敖学文"},{"authorName":"余方新","id":"722a6e8c-a233-48cc-872c-d49e1ea4fa55","originalAuthorName":"余方新"},{"authorName":"谭敦强","id":"1c4cf9c4-6e04-4e50-b5a1-0ff9b9fbf9db","originalAuthorName":"谭敦强"}],"doi":"10.3969/j.issn.1001-4381.2010.07.006","fpage":"29","id":"75567ca9-b1cc-4bde-bf5a-70006acfecd8","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"97f8a868-6ea9-4bb2-8947-a3b220a53855","keyword":"氧化","originalKeyword":"内氧化"},{"id":"4b5a4986-48c6-448c-8072-1cad4f43c5d3","keyword":"工艺","originalKeyword":"工艺"},{"id":"7cb304cb-5d53-4d35-a788-bf079585f76d","keyword":"动力学","originalKeyword":"动力学"},{"id":"879249a7-3bff-4ffb-99b9-7bfeed0e5c53","keyword":"弥散强化","originalKeyword":"弥散强化"}],"language":"zh","publisherId":"clgc201007006","title":"Cu-Al合金氧化工艺参数对性能影响的研究","volume":"","year":"2010"},{"abstractinfo":"对Cu-Al合金的氧化工艺及其动力学进行了系统研究。结果表明:本实验条件下以1223K,0.5h氧化工艺所得材料的性能最佳,其显微组织特征是Cu基体上均匀弥散分布着纳米级γ-Al2O3粒子。理想条件的氧化初期和实际条件下的氧化动力学曲线服从抛物线规律。温度、时间、Cu-Al合金粉颗粒半径和Al浓度是实际氧化控制的4要素,它们间的函数关系近似满足下式:t=6.79R2CBexp(23251/T)。实际氧化时间不宜过长,氧化温度应该:1123K<T≤1223K。","authors":[{"authorName":"申玉田","id":"60fe9905-6894-4540-a633-148d171e3abf","originalAuthorName":"申玉田"},{"authorName":"崔春翔","id":"1df9dc80-00ab-4d9f-a6c6-7643d222bfcf","originalAuthorName":"崔春翔"},{"authorName":"吴人洁","id":"40045fb8-1ce8-44ba-9081-6e44fa85e944","originalAuthorName":"吴人洁"},{"authorName":"徐艳姬","id":"b0c028a6-1fd7-43c9-b132-0f1007a3626b","originalAuthorName":"徐艳姬"},{"authorName":"孟凡斌","id":"061f26f2-d37f-4aef-8f80-0fb897703b25","originalAuthorName":"孟凡斌"}],"doi":"","fpage":"44","id":"56df703d-3f80-490f-8b96-7805c3f53040","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a45746d5-1601-48f9-9bf3-b8f10e2f6c2e","keyword":"Cu-Al合金","originalKeyword":"Cu-Al合金"},{"id":"049f55a7-6458-4135-b93e-42428f83acda","keyword":"氧化","originalKeyword":"内氧化"},{"id":"b07b4c7c-94f0-444a-a38e-695293bcddd0","keyword":"动力学","originalKeyword":"动力学"},{"id":"3e29a0f2-424e-410b-a7e6-0c0668a10e38","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"xyjsclygc200101012","title":"Cu-Al合金氧化工艺及动力学的研究","volume":"30","year":"2001"},{"abstractinfo":"采用氧化法制备Cu-5%Al2O3(质量分数)复合粉末,通过XRD、SEM-EDX、TEM等检测手段对粉末结构性能进行分析.结果表明,通过合理控制气氛和氧化参数,Cu-Al中Al能够脱溶并被氧化.在内氧化温度为900℃条件下,0.5h时氧化程度不理想;延长到1h时,氧化能够基本完成.能谱分析表明,Al元素分布出现局部偏聚,主要是由氧化过程中Al反向扩散引起的.电子衍射花样标定表明,晶生成了近球形的γ-Al2O3,尺寸为10~40 nm;晶界形成粗大的α-Al2O3,形貌呈近球形(约200 nm)和条枝状,条状粒子长约200 nm,宽约100 nm.粉末的显微硬度最高达到105.05HV.","authors":[{"authorName":"秦晓冬","id":"3593303e-af56-49cf-a1bf-61e9477bd72e","originalAuthorName":"秦晓冬"},{"authorName":"蔡一湘","id":"4d7cd4ae-849c-4650-b541-d3f0d6c6623e","originalAuthorName":"蔡一湘"},{"authorName":"韩胜利","id":"8da955ce-28bb-4fb7-8829-050b7649324d","originalAuthorName":"韩胜利"},{"authorName":"刘沙","id":"2766bff9-9ab9-441c-9f80-60377646cefa","originalAuthorName":"刘沙"}],"doi":"","fpage":"342","id":"8ff99db2-7636-4407-b7da-f88ec1991b86","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"68f03276-b2b4-4811-baf5-b2c6d1b7d23a","keyword":"Al2O3p/Cu复合粉末","originalKeyword":"Al2O3p/Cu复合粉末"},{"id":"7dde9a45-614c-4098-8f63-d9ca626aaa90","keyword":"氧化","originalKeyword":"内氧化"},{"id":"171c0bac-4825-4528-b262-1db5d916a53f","keyword":"反向扩散","originalKeyword":"反向扩散"},{"id":"b6a31c3c-6b1b-4c72-8549-99920f7059e1","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"cldb2013z1096","title":"氧化制备Cu-5%Al2O3复合粉末的研究","volume":"27","year":"2013"},{"abstractinfo":"通过对镍基合金进行不同温度的恒温熔融硫酸盐热腐蚀试验,对腐蚀产物横断面进行形貌观察及微区成分分析,研究了一种高铬镍基合金在恒温热腐蚀期间腐蚀产物分布特征及氧化硫化行为.结果表明,该高铬镍基合金在900和950℃腐蚀100 h期间,合金氧化和硫化同时发生,且腐蚀产物中出现分层结构,由表及里各层中的主要氧化物分别为:A12O3和Cr2O3,A12O3,CrS.该合金在各温度的恒温热腐蚀期间,均发生A1元素的氧化和Cr元素的硫化;与外氧化膜相邻的区域为Al元素的氧化区,远离外氧化膜的基体内部形成Cr元素的硫化区;随腐蚀温度升高,氧化区和硫化区深度增加,氧化物和硫化物的尺寸增大.","authors":[{"authorName":"卢旭东","id":"69366f07-0e63-411f-b0be-eb6f09f077dd","originalAuthorName":"卢旭东"},{"authorName":"田素贵","id":"5694d920-8382-43e5-98fc-c8185960dafb","originalAuthorName":"田素贵"},{"authorName":"陈涛","id":"587dee1e-48fa-4ce9-9bad-602cb722c905","originalAuthorName":"陈涛"},{"authorName":"郭策安","id":"33373a7d-7533-4bb1-ac59-7ac84550be1c","originalAuthorName":"郭策安"},{"authorName":"李光瑞","id":"17a5e891-8f59-4343-8eb3-34681ffb8176","originalAuthorName":"李光瑞"}],"doi":"","fpage":"79","id":"48d81dc0-ba2d-4a89-8ce1-bd46af80b7cc","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2e31592e-eb76-4ea2-a60f-463c8b674851","keyword":"镍基合金","originalKeyword":"镍基合金"},{"id":"c3637d66-2560-43f7-916c-f96a4e4ae2a7","keyword":"熔盐","originalKeyword":"熔盐"},{"id":"a498c715-1618-46d1-99fd-2c1c4254de99","keyword":"热腐蚀","originalKeyword":"热腐蚀"},{"id":"fb8421fc-cd12-4a3e-bc19-2d1d8fbbb969","keyword":"氧化","originalKeyword":"内氧化"},{"id":"a9207002-3d27-4abf-836f-bdfd378599a3","keyword":"硫化","originalKeyword":"内硫化"}],"language":"zh","publisherId":"xyjsclygc201401016","title":"高铬镍基合金熔融硫酸盐热腐蚀过程中氧化硫化行为的研究","volume":"43","year":"2014"}],"totalpage":4560,"totalrecord":45599}