{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过对螺旋埋弧焊接X70钢管焊缝金属进行疲劳试验,得到了不同应力幅和应力比下的疲劳寿命数据,对疲劳寿命的概率分布进行了分析;依据当量疲劳寿命公式,获得疲劳抗力系数和当量疲劳极限,并对其概率分布进行分析,进而建立了焊缝金属的P-S-N 曲线,给出了指定存活率下的疲劳寿命曲线。结果表明:焊缝金属的疲劳寿命服从对数正态分布,疲劳抗力系数服从对数正态分布,以当量应力表示的疲劳极限服从正态分布。","authors":[{"authorName":"郑新侠","id":"3da2c3a1-4819-4dfe-93dd-ebda0af6b8eb","originalAuthorName":"郑新侠"},{"authorName":"雒设计","id":"53e78335-97de-4546-bd98-cf4b45e3bebe","originalAuthorName":"雒设计"}],"doi":"10.11973/jxgccl201607013","fpage":"56","id":"b1d25f7d-f7d8-4b0f-b207-b3a59b7e8efc","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"b83f664e-8553-48e4-87e1-4045bf89368a","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"},{"id":"e74d53d0-cfd8-4ac3-98c7-ee2767631c5f","keyword":"概率分布","originalKeyword":"概率分布"},{"id":"cf448c4f-b2fc-4bd7-8356-aae2c0099990","keyword":"P-S-N 曲线","originalKeyword":"P-S-N 曲线"},{"id":"77d87118-9dfd-4f73-afee-1e6862f41bfb","keyword":"焊缝金属","originalKeyword":"焊缝金属"},{"id":"72ed2c50-6d5f-40a8-9d47-8d6f9322a45b","keyword":"X7 0 钢","originalKeyword":"X7 0 钢"}],"language":"zh","publisherId":"jxgccl201607013","title":"螺旋埋弧焊接X70钢管焊缝金属P-S-N 曲线的建立","volume":"40","year":"2016"},{"abstractinfo":"在模拟海水中接种了硫酸盐还原菌(SRB),测得其生长曲线以及该模拟海水pH和溶解氧浓度随时间的变化曲线;在接种及未接种SRB模拟海水中采用三电极体系测得X70钢的开路电位、极化曲线和电化学阻抗谱,分析了SRB不同生长阶段对其腐蚀行为的影响.结果表明:SRB的生长经历了数量呈指数增长时期(0~5d),数量达到最大的稳定生长期(6~10d)和数量减少的衰亡期(11~14d)三个阶段;接种SRB模拟海水的pH稳定在6.19~7.18之间,溶解氧浓度随时间的延长呈下降趋势;在接种SRB模拟海水中,随着SRB数量的增多, X70钢的自腐蚀电流密度逐渐增加;在接种SRB模拟海水中试样的表面点蚀坑较为明显,且随时间的延长点蚀坑直径有所增大.","authors":[{"authorName":"葛岚","id":"fd625ff1-3572-4f3a-9b91-34838a22b5ad","originalAuthorName":"葛岚"},{"authorName":"吴明","id":"60ce7b20-3b4c-4cd1-b076-3e5db6aaf8a8","originalAuthorName":"吴明"},{"authorName":"谢飞","id":"9b887fa2-5e83-486e-b753-ebe6bee3ccfb","originalAuthorName":"谢飞"},{"authorName":"王丹","id":"6ec130ad-42df-4063-a709-edeb63aadcf1","originalAuthorName":"王丹"},{"authorName":"孙超","id":"7fa553ed-9f34-48f1-8836-a52c43735a4b","originalAuthorName":"孙超"},{"authorName":"张文建","id":"1d9de267-1a47-4e55-b3ce-c4066f641d7e","originalAuthorName":"张文建"}],"doi":"10.11973/jxgccl201608022","fpage":"94","id":"7831599d-450d-46b3-b1f4-620907d63ecb","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"0e450d29-4a8f-4ff4-becb-201864faa6e7","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"17c5ee9c-2a0a-41f9-82eb-a0d095c4898d","keyword":"X7 0 钢","originalKeyword":"X7 0 钢"},{"id":"812a5302-adbb-4772-9d2a-89cebe37cfc4","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"}],"language":"zh","publisherId":"jxgccl201608022","title":"硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响","volume":"40","year":"2016"},{"abstractinfo":"The thermal stability, magnetocaloric effect, and refrigeration capacity (RC) of Gd-based Gd(65)Fe(20)Al(15-x)B(x) (x=0-7) glassy ribbons have been investigated. A relatively wide supercooled liquid region Delta T(x)(Delta T(x)=T(x)-T(g)) (50-80 K) and large reduced glass transition temperature T(rg)(T(rg)=T(g)/T(m)) (>0.63) are found in Gd(65)Fe(20)Al(15-x)B(x) glassy ribbons. The distinctive glass transition and sharp crystalline events as well as large values of Delta T(x) and T(rg) confirm the excellent glass forming ability of these alloys. The maximal magnetic entropy changes, -Delta S(M)(max), and RC values of the specimens are about 4.80-5.21 J/kg K and 700-800 J/kg under 50 kOe, respectively. These -Delta S(M)(max) values are comparable to or even higher than that of some reported bulk metallic glasses. Moreover, the larger RC values are due to the broad Delta S(M) peak (similar to 200 K), which is caused by the glassy structure. The large Delta S(M) and RC values make the Gd-based Gd(65)Fe(20)Al(15-x)B(x) glassy ribbons attractive candidates for magnetic refrigeration materials. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3335498]","authors":[],"categoryName":"|","doi":"","fpage":"","id":"55012ecb-8d01-4ad1-9fb0-6303a49c23b8","issue":"9","journal":{"abbrevTitle":"JOAP","id":"7dcf8a89-0513-40ee-be2d-759941dcef7e","issnPpub":"0021-8979","publisherId":"JOAP","title":"Journal of Applied Physics"},"keywords":[{"id":"6fc15e5a-dbe9-443c-9401-f46fa2b382f0","keyword":"magnetic refrigeration;temperature;transition","originalKeyword":"magnetic refrigeration;temperature;transition"}],"language":"en","publisherId":"0021-8979_2010_9_1","title":"Thermal stability and magnetocaloric effect of the Gd(65)Fe(20)Al(15-x)Bx (x=0-7) glassy ribbons","volume":"107","year":"2010"},{"abstractinfo":"The oxidation in 10(5)Pa of pure oxygen of three Ni-WxCr-7Al alloys (x = 0,5,10 at.%) was studied at 1173K. A dense external scale of NiO overlying a zone of internal oxidation formed on Ni-7Al and Ni-5Cr-7Al. On the contrary, an external Al2O3 layer formed on Ni-10Cr-7Al. Thus, the addition of sufficient Cr levels to Ni-7Al produced a classical third-element effect, inducing the transition between the internal and external oxidation of Al. This effect is interpreted on the basis of an extension to ternary alloys of a criterion first proposed by Wagner for the transition between the internal and external oxidation of the most reactive component in binary alloys.","authors":[],"categoryName":"|","doi":"","fpage":"369","id":"80866f22-ea59-4ec7-b02d-c5fee09f9233","issue":"6","journal":{"abbrevTitle":"HTMAP","id":"8c150755-1cd7-4138-99f9-977ab79fd688","issnPpub":"0334-6455","publisherId":"HTMAP","title":"High Temperature Materials and Processes"},"keywords":[{"id":"d348030e-d446-4be8-85d6-202a4a43cd0f","keyword":"ternary alloys;Ni-Cr-Al;oxidation;third-element effect;most-reactive component;1200 degrees c;internal oxidation;oxidant;pressures;ternary alloys;al alloys;diffusion;aluminum;nickel;oxygen","originalKeyword":"ternary alloys;Ni-Cr-Al;oxidation;third-element effect;most-reactive component;1200 degrees c;internal oxidation;oxidant;pressures;ternary alloys;al alloys;diffusion;aluminum;nickel;oxygen"}],"language":"en","publisherId":"0334-6455_2005_6_2","title":"The third-element effect on the oxidation of Ni-xCr-7Al alloys (x=0, 5, 10 at.%) at 1173K","volume":"24","year":"2005"},{"abstractinfo":"采用销盘式高温磨损试验机对0Cr17Ni7Al钢进行干滑动摩擦磨损试验,研究了该材料不同热处理状态、不同工况下的摩擦磨损行为,采用EDS、XRD、SEM分析磨损表面成分、形貌和磨面剖面结构,探讨0Cr17Ni7Al钢的磨损机理.结果表明:磨损率随着载荷的增加而增加,随环境温度的升高而升高.其中在环境温度25℃和200℃低载时,磨损形式主要以磨粒磨损为主,随着载荷增加变成由粘着磨损和磨粒磨损混合作用机制.200℃高载时候磨损形式主要以粘着磨损为主,400℃时开始出现疲劳磨损.环境温度25℃和200℃低载时固溶处理试样的耐磨性最好,而在400℃时最差.","authors":[{"authorName":"房冠群","id":"7179b33d-593e-46d3-bdb5-11b6c13fe0f3","originalAuthorName":"房冠群"},{"authorName":"王树奇","id":"d09cbd9f-abb7-4957-9872-7662efe38f24","originalAuthorName":"王树奇"},{"authorName":"茅奕舒","id":"70ca8f14-db03-4d0b-9ea6-f6f5f17d7c9d","originalAuthorName":"茅奕舒"}],"doi":"","fpage":"82","id":"381d4ecb-97fa-401a-a67a-3bb091efaa58","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"dbfc367a-e175-4f0d-ac82-8311dc2670d9","keyword":"0Cr17Ni7Al钢","originalKeyword":"0Cr17Ni7Al钢"},{"id":"8e9ebf8f-0c73-41dd-b1a8-bf599d502505","keyword":"干滑动","originalKeyword":"干滑动"},{"id":"db101902-318e-4da2-bdf1-de37377778e9","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"f7b61b5a-9456-4b68-bad1-29e108e212de","keyword":"磨损率","originalKeyword":"磨损率"},{"id":"fe06f5e1-1ffa-43c7-a446-1807742d1b8e","keyword":"磨损机理","originalKeyword":"磨损机理"},{"id":"167847a4-9c30-4b21-895c-1e2a4ac90061","keyword":"疲劳磨损","originalKeyword":"疲劳磨损"}],"language":"zh","publisherId":"gtft201201017","title":"0Cr17Ni7Al钢的摩擦磨损行为研究","volume":"33","year":"2012"},{"abstractinfo":"采用外加恒定电位下腐蚀电流-温度扫描方法研究了0Cr25Ni7Mo4、304和316不锈钢在1 mol/L NaCl水溶液中的点蚀行为。利用不锈钢临界点蚀温度评价了材料的耐点蚀性能.测得0Cr25Ni7Mo4和316不锈钢的临界点蚀温度分别为79.5 ℃和15 ℃,304不锈钢在0 ℃以下.对0Cr25Ni7Mo4不锈钢材料优良耐点蚀性能的原因进行了分析讨论.","authors":[{"authorName":"吴玮巍","id":"a320e723-614a-40f6-b2be-ce97ea8790cd","originalAuthorName":"吴玮巍"},{"authorName":"蒋益明","id":"1e7f3a72-0fca-4fd1-ac82-14272df5ab45","originalAuthorName":"蒋益明"},{"authorName":"廖家兴","id":"104c9e76-0906-4686-91ea-7ae8315adb88","originalAuthorName":"廖家兴"},{"authorName":"钟澄","id":"040f76e5-48be-4043-9535-544b9d9b5eed","originalAuthorName":"钟澄"},{"authorName":"郭峰","id":"d8240606-9f8f-41bf-bec7-547320200e8f","originalAuthorName":"郭峰"},{"authorName":"李劲","id":"62688d4a-ca4a-45a6-bbeb-62cd4e1d63c5","originalAuthorName":"李劲"}],"categoryName":"|","doi":"","fpage":"285","id":"49ee6253-537d-45d9-87bb-1afbe4a42892","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"ad75b4bd-1039-4290-a145-01c6fa37eb3c","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"3201151c-70f2-4de7-9b36-e0d17c17a2b5","keyword":"null","originalKeyword":"null"},{"id":"e842db9a-785e-4ccf-a86c-d0b16378e849","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_4_10","title":"0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究","volume":"18","year":"2006"},{"abstractinfo":"采用外加恒定电位下腐蚀电流-温度扫描方法研究了0Cr25Ni7Mo4、304和316不锈钢在1 mol/L NaCl水溶液中的点蚀行为.利用不锈钢临界点蚀温度评价了材料的耐点蚀性能.测得0Cr25Ni7Mo4和316不锈钢的临界点蚀温度分别为79.5℃和15℃,304不锈钢在0℃以下.对0Cr25Ni7Mo4不锈钢材料优良耐点蚀性能的原因进行了分析讨论.","authors":[{"authorName":"吴玮巍","id":"f3f2d9ef-4a7a-40a2-b564-711f6c66996a","originalAuthorName":"吴玮巍"},{"authorName":"蒋益明","id":"fadf5135-f001-4277-be07-6dba385a66e2","originalAuthorName":"蒋益明"},{"authorName":"廖家兴","id":"77f41dd6-a83d-4e81-92f3-c5dca4fc318c","originalAuthorName":"廖家兴"},{"authorName":"钟澄","id":"facd8541-7ba5-49a5-b6ae-b4b8805aff9e","originalAuthorName":"钟澄"},{"authorName":"郭峰","id":"3f50b4e5-15ad-42cf-99fb-d2f6ae56ff2e","originalAuthorName":"郭峰"},{"authorName":"李劲","id":"27975826-f274-42eb-af8f-196c4ad8d76c","originalAuthorName":"李劲"}],"doi":"10.3969/j.issn.1002-6495.2006.04.014","fpage":"285","id":"15aa24a0-4e31-4c39-a815-cd9f34942c22","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"6f561a3f-9fee-4c7d-aae5-eaec25db213e","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"b45356f0-9078-446f-aa63-889a66f10290","keyword":"临界点蚀温度","originalKeyword":"临界点蚀温度"},{"id":"2b8e7b9c-750b-4387-a83f-172d35c0be31","keyword":"点蚀","originalKeyword":"点蚀"}],"language":"zh","publisherId":"fskxyfhjs200604014","title":"0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究","volume":"18","year":"2006"},{"abstractinfo":"0Cr1 7Ni7Al钢固溶处理后组织转变为马氏体,导致抗拉强度、屈服强度及硬度等指标不合格,这是由于0Cr l7Ni7Al钢成分下限的控制导致固溶处理后马氏体(Ms)点高于室温,降温过程中形成了马氏体转变造成的.通过严格控制冶炼化学成分,上调奥氏体形成元素C、Mn、Ni及稳定元素Cr的含量,有效降低了该钢种的马氏体(Ms)转变点,解决了固溶处理后性能不合格问题.","authors":[{"authorName":"包文全","id":"af93c7eb-ea40-4a75-9104-9423f9d00459","originalAuthorName":"包文全"},{"authorName":"许强","id":"6ba50533-690b-4631-899a-cac03b33c376","originalAuthorName":"许强"},{"authorName":"韩凤军","id":"e12a955d-df5c-4a92-a176-a25eec3be186","originalAuthorName":"韩凤军"},{"authorName":"牛伟","id":"c1038ddd-70a8-4787-873d-b27f3dfb0e36","originalAuthorName":"牛伟"},{"authorName":"马俊杰","id":"10cc4f84-d365-4db5-8f71-ae67f03c9320","originalAuthorName":"马俊杰"}],"doi":"10.13228/j.boyuan.issn1001-0777.20160049","fpage":"14","id":"c7a4944b-158f-4617-b68f-dbd653e3dcdd","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"1e6b1e58-cc0f-48d4-bd37-eb3b53b5b069","keyword":"0Cr17Ni7Al钢","originalKeyword":"0Cr17Ni7Al钢"},{"id":"15ff4db4-d60a-40a7-8862-1ae58ed1f6a7","keyword":"化学成分","originalKeyword":"化学成分"},{"id":"f52ffc50-75b3-4223-8621-e37d1c1b6b34","keyword":"性能","originalKeyword":"性能"},{"id":"bb921306-37a6-4d73-bde9-dfca20cc2d3f","keyword":"Ms转变点","originalKeyword":"Ms转变点"}],"language":"zh","publisherId":"wlcs201701003","title":"沉淀硬化0Cr17Ni7Al钢性能不合格原因分析与改进","volume":"35","year":"2017"},{"abstractinfo":"采用自制液固两相流冲蚀磨损试验机研究了0Cr17Ni7Al的冲蚀磨损性能及热处理工艺的影响,并与硬度大小相近的H13钢进行对比分析,探讨了其冲蚀磨损机理.结果表明:经1 040℃固溶+520℃时效后的0Cr17Ni7Al的抗冲蚀性能最好;因材料加工硬化的作用,冲蚀失重率随冲蚀时间的增加先增大后保持在稳定值;冲蚀角度对材料冲蚀失重具有明显影响,在15°~90°范围内,失重量随冲蚀角度的增加先增大后减小,45°时达到极大值;低角度下0Cr17Ni7Al钢冲蚀性能远优于H13钢,冲蚀极大值基本相等.通过表面冲蚀形貌的观察发现,本试验条件下浆体对材料的冲蚀机制主要为挤压推出.因此,高强度和高硬度有利于提高0Cr17Ni7Al钢的抗冲蚀磨损性能.","authors":[{"authorName":"朱韬","id":"cd217120-7b0d-4bc3-a169-3575749aea9f","originalAuthorName":"朱韬"},{"authorName":"王树奇","id":"3bcac623-92b4-47e2-8e52-ed85c529bb29","originalAuthorName":"王树奇"},{"authorName":"纪秀林","id":"492db436-a8c8-42fa-8eb1-4dd1e5bd941e","originalAuthorName":"纪秀林"}],"doi":"10.7513/j.issn.1004-7638.2013.05.014","fpage":"69","id":"75d7bf12-0baa-481b-8e54-15498ed2f3cd","issue":"5","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"09295dfa-b514-4677-9241-348bf474fe3d","keyword":"0Cr17Ni7Al","originalKeyword":"0Cr17Ni7Al"},{"id":"6614d428-5cea-4db7-8ca5-36a54bfa0bed","keyword":"沉淀硬化不锈钢","originalKeyword":"沉淀硬化不锈钢"},{"id":"c0358cf1-734b-4ed7-a65d-c27a38e4b41f","keyword":"冲蚀磨损","originalKeyword":"冲蚀磨损"},{"id":"9d5e50ed-1ba8-4cc3-b765-a283fe5f0652","keyword":"磨损机理","originalKeyword":"磨损机理"}],"language":"zh","publisherId":"gtft201305014","title":"0Cr17Ni7Al沉淀硬化不锈钢的冲蚀磨损性能研究","volume":"34","year":"2013"},{"abstractinfo":"采用感应熔炼方法制备了La0.75Mg0.25Ni3.5-xFex(x=0.0.05,0.1,0.2,0.3)四元贮氢合金,系统地研究了合金B侧Fe对Ni部分替代对合金相结构及电化学性能的影响.X射线衍射(XRD)分析表明,La0.75Mg0.25Ni3.5-xFex由(La,Mg)2Ni7相(包括Gd2Co7型高温相和Ce2Ni7型低温相)组成.此外,随着Fe元素的加入,该类合金中出现CaCu5型LaNi5相,且随着Fe含量的增加而增多.电化学测试表明,随Fe含量的增加,合金电极活化次数变化不大,而其最大放电容量呈现先增后减的趋势,合金的最大放电容量由x=0.05时的376.21 mAh·g -1下降到x=0.3时的340.89 mAh·g-1;合金的高倍率放电性能随着Fe含量的增加而降低,当电流密度为900 mA·g-1时,合金的高倍率放电性能由83.66%(x=0)减小到62.23%(x=0.3);循环稳定性先增加后下降.","authors":[{"authorName":"许剑轶","id":"30144fb1-c4a0-4450-ba5f-24c17aa8cb46","originalAuthorName":"许剑轶"},{"authorName":"阎汝煦","id":"61609419-56db-42ae-90eb-f73430bf2301","originalAuthorName":"阎汝煦"},{"authorName":"罗永春","id":"b61bedf7-7002-466d-8dea-08483ddbf0b7","originalAuthorName":"罗永春"},{"authorName":"张胤","id":"f769344d-a348-4e82-89fd-5de126cd9014","originalAuthorName":"张胤"},{"authorName":"陈江平","id":"c35f020e-aac6-42b6-b446-6334f77e570e","originalAuthorName":"陈江平"}],"doi":"10.3969/j.issn.0258-7076.2009.03.007","fpage":"323","id":"2be06752-bb62-4c7d-aa6f-191306c0867f","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"0014d954-9982-4694-8405-7c7f878dc199","keyword":"A2B7型贮氢合金","originalKeyword":"A2B7型贮氢合金"},{"id":"fbdf68fc-cc2b-4850-acc8-48cf6226103d","keyword":"Fe替代","originalKeyword":"Fe替代"},{"id":"2d2da349-d97c-4d15-a4f4-916b71fa3bf4","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"7135ba3a-3558-4d5e-a304-b3346113a1ea","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjs200903007","title":"A2B7型La0.75Mg0.25Ni3.5-xFex(x=0~0.3)贮氢合金相结构及电化学性能研究","volume":"33","year":"2009"}],"totalpage":6038,"totalrecord":60378}