{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"滴状冷凝过程中,存在蒸汽流动对液滴的吹扫作用,液滴在蒸汽剪切作用下克服壁面黏附变形和运动,液滴运动速度越大,冷凝传热性能越高.但是液滴在蒸汽作用下变形和运动的细节还不清晰,蒸汽速度对液滴变形和运动的影响机理还不明确.本文采用自由能格子Boltzmann方法研究了在不同蒸汽速度剪切作用下,液滴在具有不同润湿性固体表面上的变形和运动过程,分析了蒸汽速度和接触角对液滴变形和运动的影响机制,结果显示随着蒸汽速度的增加,液滴变形越大,液滴在固体表面的运动速度越大,停留时间越短,有利于液滴的移除和表面更新,相同蒸汽速度的作用下,液滴在接触角大的固体表面上变形和运动速度越大,也有利于液滴的移除和表面更新.从而定性或半定量地揭示了蒸汽速度影响蒸汽滴状冷凝传热的物理机制.","authors":[{"authorName":"彭本利","id":"c20ba9fa-219b-44f3-874d-f88fee3ff96b","originalAuthorName":"彭本利"},{"authorName":"徐威","id":"4cc07b44-f12a-4ed3-8e13-7511e14258f1","originalAuthorName":"徐威"},{"authorName":"温荣福","id":"83a164f7-5e75-4e18-894e-850552a1182c","originalAuthorName":"温荣福"},{"authorName":"兰忠","id":"ac4e59c4-9054-4101-9528-459627ff7c87","originalAuthorName":"兰忠"},{"authorName":"白涛","id":"de924fc9-cb75-4bdd-8437-a2154177f8e0","originalAuthorName":"白涛"},{"authorName":"马学虎","id":"b3a493f9-3821-4f25-98e6-3037b23c6df0","originalAuthorName":"马学虎"}],"doi":"","fpage":"820","id":"a8d00ea0-455f-4fce-b2b9-e11a86525fb8","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"bf0c10ae-36f1-4cca-adfe-3804a0b31c93","keyword":"蒸汽剪切","originalKeyword":"蒸汽剪切"},{"id":"6a231900-4e8e-4509-898d-f207c9529bca","keyword":"液滴变形","originalKeyword":"液滴变形"},{"id":"ce80e7cc-edb7-4370-988f-1cc07d7fcbeb","keyword":"液滴运动","originalKeyword":"液滴运动"},{"id":"f18cc2bd-ec1f-47a1-9ef1-ecf3ab7bc440","keyword":"格子Boltzmann模拟","originalKeyword":"格子Boltzmann模拟"}],"language":"zh","publisherId":"gcrwlxb201504026","title":"蒸汽剪切驱动液滴行为的格子Boltzmann模拟","volume":"36","year":"2015"},{"abstractinfo":"格子Boltzmann方法具有微介观的特性,能够自动捕捉和追踪界面,在多相流领域有广阔的应用前景.对于伴有气液相变的传热问题,格子Boltzmann方法已有模型较少,其中有一部分是通过质量变化间接反映相变过程,不能真实反映温度场的演化和影响.本文采用了模拟多相流动和分离的自由能模型,结合基于Stefan边界的相变传热模型,考虑壁面自由能对流体与壁面间润湿性的影响,模拟了静态接触角、过热壁面的气泡生长和脱离,并进行了更接近真实沸腾过程的随机生成气泡的模拟,以及流动沸腾的气泡生长和脱离的模拟.","authors":[{"authorName":"汪冬冬","id":"9fc6d7ee-7966-40c3-b1fd-b59d3882e286","originalAuthorName":"汪冬冬"},{"authorName":"刘志春","id":"54c94d6c-4ddc-48eb-8b4f-982f0cfb5342","originalAuthorName":"刘志春"},{"authorName":"刘伟","id":"9a4cc7c7-6ec4-4da7-9b4e-1a6b412979be","originalAuthorName":"刘伟"},{"authorName":"刘帆","id":"c77e9511-45b2-421e-a288-cfd65dfaadf5","originalAuthorName":"刘帆"},{"authorName":"朱世平","id":"ac453872-259f-4cc3-b66f-7eaa65e79d25","originalAuthorName":"朱世平"}],"doi":"","fpage":"2027","id":"7e3181cf-43be-42d5-b1d6-af8b439b6c4b","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4cbcae82-7b42-44d2-bb10-9b3b962bb384","keyword":"格子Boltzmann","originalKeyword":"格子Boltzmann"},{"id":"e0ed9f26-19ab-492d-92ec-0741bef35e9d","keyword":"自由能模型","originalKeyword":"自由能模型"},{"id":"2ff99207-e43b-4391-ad01-cd28a08db28d","keyword":"接触角","originalKeyword":"接触角"},{"id":"a69c01a0-2caf-433d-a6ab-22253882fdaf","keyword":"相变模型","originalKeyword":"相变模型"}],"language":"zh","publisherId":"gcrwlxb201410030","title":"格子Boltzmann方法模拟气泡生长脱离","volume":"35","year":"2014"},{"abstractinfo":"辐射动力学理论是描述辐射传输是重要手段,基于此,本文建立了辐射能和辐射动量守恒方程,并基于Chapman-Enskog多尺度展开方法实现了从辐射传输Boltzmann方程到宏观方程的推导,进而建立了适于一维辐射传输的2分量格子Boltzmann模型。数值结果与精确解吻合较好,表明本文提出的LBM方法具有很好的准确性和稳定性,为LBM方法在辐射传热问题的应用奠定了理论基础。","authors":[{"authorName":"马宇","id":"bf3366dd-7c70-49c8-be70-9dea04b9711d","originalAuthorName":"马宇"},{"authorName":"董士奎","id":"81c43006-fcc3-469a-a5b2-35af1ca84a5a","originalAuthorName":"董士奎"},{"authorName":"赫晓东","id":"3756d9c6-07b0-4076-9041-858138813991","originalAuthorName":"赫晓东"},{"authorName":"谈和平","id":"dd263b94-d4b8-4563-919d-f5999b0d93d2","originalAuthorName":"谈和平"}],"doi":"","fpage":"1900","id":"c74aa472-0725-4cdf-896b-d079ef07669f","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1bbdf1e3-20f1-4cbc-b228-d0b68d5e541e","keyword":"格子Boltzmann方法","originalKeyword":"格子Boltzmann方法"},{"id":"b6996e18-0d22-4e1a-86e2-5675d0b2b0c1","keyword":"辐射传输","originalKeyword":"辐射传输"},{"id":"5c8d73ef-3afd-466c-8e93-777f1c5a3d84","keyword":"辐射动力学","originalKeyword":"辐射动力学"}],"language":"zh","publisherId":"gcrwlxb201111026","title":"辐射传输的格子Boltzmann模拟","volume":"32","year":"2011"},{"abstractinfo":"应用一种轴对称格子 - Boltzmann 模型模拟了圆管通道内脉动流.首先对a=9.36,Re=319工况下的正弦压力梯度驱动的脉动流进行模拟,模拟的径向无量纲速度和解析解吻合很好,还应用此模型研究了Womersley数对脉动流的影响.模拟结果表明,此轴对称格子-Boltzmann模型能有效模拟圆管脉动流.最后应用该模型对局部扩张管管内流动进行初步的模拟研究,并研究了不同扩张程度对流动的影响.","authors":[{"authorName":"李小飞","id":"39b4ff3e-bf08-4466-ae31-d2f447ca909b","originalAuthorName":"李小飞"},{"authorName":"唐桂华","id":"c67a7920-683b-4c4c-a857-bee7d87eca6e","originalAuthorName":"唐桂华"},{"authorName":"叶培兴","id":"391744c2-bfa2-4260-a765-8fc4cff9a9d5","originalAuthorName":"叶培兴"},{"authorName":"陶文铨","id":"922d9a22-4551-4c5a-a3ff-cf22db175d6a","originalAuthorName":"陶文铨"}],"doi":"","fpage":"810","id":"ef50ebec-b69f-4387-ae83-aa9c49c8cae4","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7f6d3721-c724-43dd-9fe9-2d18f5be58f6","keyword":"格子-Boltzmann模型","originalKeyword":"格子-Boltzmann模型"},{"id":"39bce47c-e581-4004-ab2f-84ef03533468","keyword":"轴对称","originalKeyword":"轴对称"},{"id":"2e6ba165-72f4-4aec-ba44-65f43ace1905","keyword":"脉动流","originalKeyword":"脉动流"}],"language":"zh","publisherId":"gcrwlxb201005023","title":"圆管脉动流的轴对称格子Boltzmann模拟","volume":"31","year":"2010"},{"abstractinfo":"考虑外加磁场下磁流体中纳米磁性粒子所受的各种作用力,建立了用于模拟磁流体流动与传热特性的两相格子Boltzmann模型,模拟了外加不同方向梯度磁场下平板间磁流体的流动与传热过程,计算了磁流体与平板间对流换热的Nusselt数,分析了磁场梯度方向、大小对Nusselt数的影响.","authors":[{"authorName":"宣益民","id":"3d356082-da51-41cf-841c-da7037bd6299","originalAuthorName":"宣益民"},{"authorName":"李强","id":"8191efeb-6f29-4132-a950-3b29feb66fcf","originalAuthorName":"李强"},{"authorName":"叶萌","id":"0dd9c83c-6880-4546-bf7e-9f995cc67566","originalAuthorName":"叶萌"}],"doi":"","fpage":"1020","id":"dfd82637-2e4c-46d8-9899-efb84637cce1","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9b8d108c-f026-40b2-b08a-d1fd70943372","keyword":"磁流体","originalKeyword":"磁流体"},{"id":"b869745f-791d-4122-b8c3-afc41623f949","keyword":"格子Boltzmann方法","originalKeyword":"格子Boltzmann方法"},{"id":"53ef1c6f-e8dd-4fa8-a26b-de163f631ad2","keyword":"Nusselt数","originalKeyword":"Nusselt数"}],"language":"zh","publisherId":"gcrwlxb200606038","title":"磁流体流动与传热的格子Boltzmann模拟","volume":"27","year":"2006"},{"abstractinfo":"本文采用格子Boltzmann方法(LBM)对微尺度Couette流的流动及传热进行了模拟.为了获得壁面边界的速度滑移和温度阶跃,在含有粘性热耗散的热格子模型的基础上,提出了一种新的直接基于宏观量的边界处理格式.模拟得到的速度场和温度分布与解析解吻合得相当好,充分说明了本文采用的模型和边界处理的合理性同时在模拟中还发现:对于不同的Kn数,均存在使得其上壁面的温度阶跃为零的临界Ec数,并且其临界值均在3.0附近.","authors":[{"authorName":"田智威","id":"b7715159-c3d5-4aeb-8971-387d8bc6c4c4","originalAuthorName":"田智威"},{"authorName":"邹春","id":"9b64fe05-dc2e-4c86-b215-79fec998d55c","originalAuthorName":"邹春"},{"authorName":"刘红娟","id":"44e40a2c-e1b2-4a6e-b171-17c2fd5e218b","originalAuthorName":"刘红娟"},{"authorName":"闫锦霞","id":"5c4bd8b0-c9c2-4ecb-83c7-b164889bd13c","originalAuthorName":"闫锦霞"},{"authorName":"郑楚光","id":"de47fdb4-4fea-49b1-ac43-206dd3d50515","originalAuthorName":"郑楚光"}],"doi":"","fpage":"29","id":"cdd2b932-7f34-4ac3-83fb-c848eb6e8a17","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2d65ecea-b9a5-4cb5-b4fb-ed17a2311007","keyword":"格子Boltzmann方法","originalKeyword":"格子Boltzmann方法"},{"id":"162dc36e-ccfa-448c-b164-314e1ac68443","keyword":"微尺度Couette流","originalKeyword":"微尺度Couette流"},{"id":"a686a26d-5e77-4d1d-a4e9-7247b35329a7","keyword":"速度滑移","originalKeyword":"速度滑移"},{"id":"7bfe1d5f-e438-4d32-b487-75a611adead5","keyword":"温度阶跃","originalKeyword":"温度阶跃"}],"language":"zh","publisherId":"gcrwlxb2007z2008","title":"格子Boltzmann方法模拟微尺度流动和传热","volume":"28","year":"2007"},{"abstractinfo":"振荡流共轭换热现象广泛存在于热声热机等工程应用中.基于双分布格子-Boltzmann模型,对平行平板间振荡流共轭换热进行了数值模拟.通过假定共轭界面处流体和固体的未知内能分布函数均为对应的平衡态滑移修正格式,提出了一种处理共轭换热边界的新方法.模拟结果表明,该方法可以保证共轭界面上温度连续和热流连续.分析了不同流体与固体导热系数比情况下振荡流共轭换热的速度场、温度场以及热流分布的特点.","authors":[{"authorName":"孟繁孔","id":"3b95f433-1563-4bc4-96d8-7ce8087fc173","originalAuthorName":"孟繁孔"},{"authorName":"李志信","id":"5c976faa-2473-4313-8b91-1f80aed7226a","originalAuthorName":"李志信"}],"doi":"","fpage":"1019","id":"885de932-2565-46ac-9260-d62b67ef7d8d","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2f000e44-e044-4bd0-83a5-50d488372233","keyword":"格子-Boltzmann方法","originalKeyword":"格子-Boltzmann方法"},{"id":"8661017e-f179-44fd-8720-5aaf2f13a88a","keyword":"振荡流","originalKeyword":"振荡流"},{"id":"32084825-8858-4bfe-9e9a-b879a085da37","keyword":"共轭换热","originalKeyword":"共轭换热"}],"language":"zh","publisherId":"gcrwlxb200706038","title":"振荡流共轭换热格子-Boltzmann模拟","volume":"28","year":"2007"},{"abstractinfo":"建立融化和自然对流耦合的格子Boltzmann双分布函数模型,采用焓法迭代求解相变非线性源项,并通过变松弛时间方法处理固液两相变热物性间题.热传导融化过程的计算值与分析解的对比分析说明该模型能够准确地模拟融化过程.自然对流条件下融化过程的模拟结果表明自然对流在一定程度上影响了融化传热及融化速率等,体现出与热传导融化不同的物理机制.","authors":[{"authorName":"杲东彦","id":"4ef2658e-462d-463e-9283-2e805c28a4b5","originalAuthorName":"杲东彦"},{"authorName":"陈振乾","id":"a7023f0d-ac9e-46b3-9dc4-40ddb2b40312","originalAuthorName":"陈振乾"},{"authorName":"施明恒","id":"8292511b-3a71-42e5-821a-5017a636162c","originalAuthorName":"施明恒"}],"doi":"","fpage":"85","id":"d5d7b2cd-02cf-4bbe-b618-aa6f31229aca","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"788433ec-49d5-4935-9403-5fa8245173d3","keyword":"格子-Boltzmann方法","originalKeyword":"格子-Boltzmann方法"},{"id":"898be784-4390-436a-8e5a-66f66a54fcf6","keyword":"融化","originalKeyword":"融化"},{"id":"047687f1-17a5-4ad6-bb47-a808c4e9518f","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"97a59bcb-36a3-489c-a1b9-e9987446f199","keyword":"自然对流","originalKeyword":"自然对流"}],"language":"zh","publisherId":"gcrwlxb201101021","title":"格子Boltzmann方法模拟融化相变过程","volume":"32","year":"2011"},{"abstractinfo":"本文研究熵格子Boltzmann方法(ELBM)对于高Reynolds数流动问题的适用性.ELBM由于其满足热力学第二定律,使得它比标准的格子Boltzmann方法(LBM)具有更高的数值稳定性.ELBM在计算过程中,通过调节松弛参数来确保系统符合熵H定律.在调节松弛参数时,必须求解一个非线性方程组,这使得计算量加大.本文基于Ehrenfest 理论,根据简单的正性约束来保证H定律的成立.在数值实例部分,对顶盖驱动流进行了研究,给出了此方法与上述方法计算效率和正确性的一个比较,并且研究了全局熵的变化.","authors":[{"authorName":"徐辉","id":"13a66f7a-b4f3-47bf-81e8-f0f1d65d93d5","originalAuthorName":"徐辉"},{"authorName":"陶文铨","id":"585788b4-4a08-42e6-aa13-61870bf1743f","originalAuthorName":"陶文铨"}],"doi":"","fpage":"129","id":"b89eaba4-185a-4d84-95b4-3664fd8910ac","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9852c514-fe2d-4cde-a5a5-5df2a002c1e4","keyword":"LBM","originalKeyword":"LBM"},{"id":"4424ab98-8ebd-4c29-82f8-ac273459cf09","keyword":"ELBM","originalKeyword":"ELBM"},{"id":"9daf962c-b304-4fb7-99cb-32cc2725b59a","keyword":"高雷诺数","originalKeyword":"高雷诺数"},{"id":"4a46203e-5c4b-4e5a-a587-eb59fee8ab96","keyword":"数值稳定性","originalKeyword":"数值稳定性"}],"language":"zh","publisherId":"gcrwlxb200901035","title":"熵格子Boltzmann方法模拟高Reynolds数流动","volume":"30","year":"2009"},{"abstractinfo":"本文利用格子Boltzmann方法对不同Ra下的Rayleigh-Benard自然对流进行了数值模拟,得到的Nu与前人的结果一致。数值结果表明,Ra=2000时,格子Boltzmann方法得到了三个静态分岔解,其中一个为非稳定解;在Ra=5×10~5时格子Boltzmann方法得到了类似于周期的振荡解。本文采用插值格子Boltzmann方法,在Ra=2000,取不同插值节点进行计算时,得到了一种非稳态解。","authors":[{"authorName":"卞恩杰","id":"d8f3661e-fc9f-4c0f-82f3-826a5db5cb2e","originalAuthorName":"卞恩杰"},{"authorName":"杨茉","id":"f2aa9888-91a2-4d5c-b48b-fc674d3b2632","originalAuthorName":"杨茉"},{"authorName":"李凌","id":"397f210a-b316-4020-a71e-41676ccf31dc","originalAuthorName":"李凌"},{"authorName":"张玉文","id":"eacc066d-f3d2-45c0-845e-bef08b858216","originalAuthorName":"张玉文"}],"doi":"","fpage":"685","id":"ceb8e867-6650-4b38-b9b2-b6406b1b62fa","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9457d05e-93e4-4f57-99a6-f805b1385255","keyword":"格子","originalKeyword":"格子"},{"id":"d7c075c3-c9da-43fd-b3b6-56fbf3f7b36f","keyword":"Boltzmann方法","originalKeyword":"Boltzmann方法"},{"id":"29282576-5050-47a2-9296-aec4701f11de","keyword":"Rayleigh-Benard流","originalKeyword":"Rayleigh-Benard流"},{"id":"50a50aa7-79da-4332-b281-3c9ea8f30a7c","keyword":"非线性","originalKeyword":"非线性"}],"language":"zh","publisherId":"gcrwlxb201204035","title":"格子Boltzmann方法对Rayleigh-Benard流的模拟与非线性分析","volume":"33","year":"2012"}],"totalpage":1759,"totalrecord":17586}