{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"采用高能球磨制备细小的复合粉末,再通过感应烧结制备耐高温自润滑IS304涂层,涂层致密且润滑相明显细化,其中Ag粉尺寸为5 μm左右、氟化物尺寸小于2μm,且氟化物粒子与Cr2O3粒子形成复合结构.室温时IS304摩擦系数较大,磨损机制主要为微观脆性断裂;随着温度的升高,由于润滑相尺寸减小、且氟化物粒子与Cr2O3粒子形成复合结构,使得摩擦副在高速滑动过程中接触点的瞬态温度迅速升高,此瞬态温度有效地激活了氟化物粒子的润滑性能,在摩擦力和压力的作用下,氟化物粒子经塑性变形后形成表面润滑膜,使得接触面的摩擦系数急剧减小.有限元计算也表明润滑相的细化和分布位置的改变可明显提高润滑相的瞬态温度.","authors":[{"authorName":"肖玲","id":"6ed7d22f-a73d-456c-954b-bc9e68e65792","originalAuthorName":"肖玲"},{"authorName":"孙岩桦","id":"9620ee84-516f-41fc-ae76-34e0dda4941f","originalAuthorName":"孙岩桦"},{"authorName":"刘夏静","id":"0c952d86-7b9e-4afe-9136-28466f5ce31d","originalAuthorName":"刘夏静"},{"authorName":"丁春华","id":"a06dcbad-4e45-4e83-864d-3a041525d7d5","originalAuthorName":"丁春华"},{"authorName":"戚社苗","id":"044dbdd3-15d5-4cf3-abd7-fb31531c41aa","originalAuthorName":"戚社苗"},{"authorName":"耿海鹏","id":"ba72f94e-53c3-475b-89c9-c887596f281a","originalAuthorName":"耿海鹏"},{"authorName":"虞烈","id":"cc9cb21c-a404-4898-a0f0-74f43c767b76","originalAuthorName":"虞烈"},{"authorName":"丁秉钧","id":"10ae117b-cee5-4039-8612-066eb43c1a94","originalAuthorName":"丁秉钧"}],"doi":"","fpage":"905","id":"2420d7fe-3924-4df0-8ae2-f0adc0f9b680","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f4a4e277-b30e-4bb6-b4c7-98340d39cc71","keyword":"润滑膜","originalKeyword":"润滑膜"},{"id":"1fab3ef4-8f89-48c7-b29f-a9017979004b","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"022038ab-f65b-405e-a250-85feb8162785","keyword":"氟化物","originalKeyword":"氟化物"},{"id":"47e0643c-49ce-42dc-b524-ab9b74492096","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"xyjsclygc201205032","title":"润滑相尺寸对自润滑膜形成的影响","volume":"41","year":"2012"},{"abstractinfo":"研制了相变可控的复合导电和自润滑材料,它是以低密度聚乙烯-炭黑为导电基材,加入固体润滑剂聚四氟乙烯、石墨和Ekonal(聚苯酯的商品名)构成.固体润滑剂的加入降低了材料的电阻率,以加入Ekonal降低幅度最大.该材料具有反复多次的加热性能,加热电压升高,升温速率加快,经历一个升温速率变化较小的平台期之后,升温速率又加快.台架实验表明,相变可控的复合导电自润滑材料可有效地减少表面的咬合.","authors":[{"authorName":"董光能","id":"e8688e24-3af0-47d7-9f87-73aaab9b395a","originalAuthorName":"董光能"},{"authorName":"谢友柏","id":"198b2a88-f9f2-470d-8a1c-8d7210a26957","originalAuthorName":"谢友柏"},{"authorName":"虞烈","id":"cef390b6-6e67-4d04-a238-be7c25da72a8","originalAuthorName":"虞烈"},{"authorName":"唐顺学","id":"e027a301-04c6-4192-94d6-7b0ec8074332","originalAuthorName":"唐顺学"}],"doi":"","fpage":"125","id":"93942abf-d0ba-4fb9-b246-4b97b50fec8e","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"237e6217-fb53-4d65-bff8-1bff9d93355c","keyword":"自润滑材料","originalKeyword":"自润滑材料"},{"id":"2657b009-15a4-4b07-bede-f0668252daec","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"4799ccc6-e39f-4a72-b6ae-f97bd6489290","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"6c2a7e61-fb51-40a7-ad3e-2554726baa82","keyword":"固体润滑剂","originalKeyword":"固体润滑剂"}],"language":"zh","publisherId":"gfzclkxygc200203030","title":"相变可控的复合导电自润滑材料的加热特性","volume":"18","year":"2002"},{"abstractinfo":"采用ECR微波等离子体增强化学气相沉积的方法于C1H2/H2/Ar2等离子环境中在单晶Si(111)晶面上制备了不同厚度的DLC膜样品,研究了薄膜的厚度随沉积时间的变化及薄膜的硬度、内应力随厚度的变化关系.结果表明,在沉积时间变化范围内,厚度与沉积时间基本呈线性关系,沉积速率可达80nm/min;制备态样品存在的内应力先随厚度增加而增加,当薄膜内应力超过某临界值时将通过表面崩裂达到应力松弛效果,XRD测得基底Si(111)峰位偏移先随厚度增加而增加,随后变化趋于平缓,表明薄膜表面崩裂后内应力维持在一定水平,但薄膜的硬度测量值受到表面崩裂程度影响.","authors":[{"authorName":"谷坤明","id":"9f0a9d19-0c66-49ec-9e3f-c5ff35ac159d","originalAuthorName":"谷坤明"},{"authorName":"吕乐阳","id":"6b1f18e3-d6ad-445f-97cc-126e30ead371","originalAuthorName":"吕乐阳"},{"authorName":"毛斐","id":"09bc85e7-2ccf-4034-aa33-617319e2977f","originalAuthorName":"毛斐"},{"authorName":"虞烈","id":"b483e38b-8357-41d6-a815-98d8529f40b1","originalAuthorName":"虞烈"},{"authorName":"汤皎宁","id":"986c5a79-87f5-40a0-a376-3756155f4eb6","originalAuthorName":"汤皎宁"}],"doi":"","fpage":"102","id":"cd84fad9-7e17-4994-91d8-04765a8591bf","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"70a4e6dc-6b65-45c5-b05c-5bcdf393214a","keyword":"ECR-CVD","originalKeyword":"ECR-CVD"},{"id":"caa8a759-4df4-4ec8-b4fd-d8551ee789fc","keyword":"DLC膜","originalKeyword":"DLC膜"},{"id":"de636da3-827f-4b94-9560-54882425d638","keyword":"内应力","originalKeyword":"内应力"}],"language":"zh","publisherId":"gncl2011z1029","title":"厚度对DLC薄膜内应力的影响研究","volume":"42","year":"2011"},{"abstractinfo":"采用等离子喷涂与粉末冶金方法分别制备了PS304、PM304镍基自润滑涂层,并对涂层的组织、拉伸结合强度进行了研究.结果表明:采用等离子喷涂制备的PS304涂层组织粗大、孔隙率高、润滑相与强化相分布不均匀.而采用高能球磨与真空烧结技术制备的PM304涂层组织均匀、致密、粒子明显细化.拉伸试验表明:PS304的拉伸结合强度较低,拉伸断口不仅出现在涂层与基底的结合处、也出现在涂层内部;而PM304的拉伸结合强度较高,涂层与基底之间结合良好、结合方式为冶金结合,拉伸断口主要出现在涂层内部.PM304涂层拉伸强度增大的原因主要为:(1)致密度提高;(2)尖锐孔隙数量降低;(3)Ag与NiCr之间形成冶金结合;(4) NiCr基体中析出粒子的弥散强化作用使得NiCr基体强度提高.","authors":[{"authorName":"段文博","id":"889a2faa-7c6e-43a5-856b-f3984f330a6e","originalAuthorName":"段文博"},{"authorName":"孙岩桦","id":"237b6d12-a90b-443d-a9b7-c70e5dd22a36","originalAuthorName":"孙岩桦"},{"authorName":"丁春华","id":"ad52180d-b9d3-44c6-9113-ebd32ddd06c2","originalAuthorName":"丁春华"},{"authorName":"耿海鹏","id":"c5226fa3-d8ac-4a87-a08c-d7d8ec2034f1","originalAuthorName":"耿海鹏"},{"authorName":"戚社苗","id":"a737fc10-f801-40a2-955a-9d72bfe474e0","originalAuthorName":"戚社苗"},{"authorName":"虞烈","id":"867597fa-54c2-4baa-818a-3e17a23dbc82","originalAuthorName":"虞烈"}],"doi":"","fpage":"79","id":"ffceb82d-009d-43fa-8511-00d77be5c606","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a9adf1d9-ff28-4607-b447-9b27afa1793c","keyword":"自润滑涂层","originalKeyword":"自润滑涂层"},{"id":"46f95e1b-2c9e-4fab-bc2b-e1d04c7976bf","keyword":"拉伸结合强度","originalKeyword":"拉伸结合强度"},{"id":"7bac7acf-1c78-45b8-bc00-d075611827dc","keyword":"粉末冶金","originalKeyword":"粉末冶金"}],"language":"zh","publisherId":"xyjsclygc201501016","title":"镍基自润滑涂层的制备及拉伸结合强度研究","volume":"44","year":"2015"},{"abstractinfo":"通过高能球磨和感应烧结制备耐高温自润滑IS304涂层,涂层中自润滑相明显细化,其中Ag尺寸为5μm左右,BaF2/CaF2尺寸为1μm左右.研究表明,环境温度和组织对涂层的摩擦性能有较大影响,当温度为20-340℃时,2种涂层的摩擦系数都较高,磨损机理主要为微观晚性断裂;随着温度升高,由于磨损面上形成由氟化物和Ag组成的自润滑膜,涂层的摩擦系数急剧降低.当温度为340-700℃时,由于IS304涂层中润滑相尺寸细小且分布均匀,使得磨损面上形成的润滑膜完整,并且Ag瞋尺寸细小.分布均匀,因此IS304涂层的摩擦系数明显低于润滑相粗大的PM304;当温度继续升高至700-800℃时,在摩擦力的作用下,软化的润滑膜表面出现塑性流变,涂层的摩擦系数明显增大.由于PM304涂层的磨损面上的Ag膜尺寸粗大,且Ag膜的塑性流变比氟化物膜更严重,使得PM304涂层的摩擦系数明显大于IS304.","authors":[{"authorName":"肖玲","id":"c30e966a-7d84-4780-aed9-7c25e73f2f75","originalAuthorName":"肖玲"},{"authorName":"丁春华","id":"0a6046c9-fe82-4348-bd09-7c7e4421a0da","originalAuthorName":"丁春华"},{"authorName":"孙岩桦","id":"cef3e6f8-4121-47de-851f-f134d77d0cee","originalAuthorName":"孙岩桦"},{"authorName":"虞烈","id":"77e9d593-2f28-4ab9-9907-239809d892b8","originalAuthorName":"虞烈"}],"doi":"10.3724/SP.J.1037.2010.00585","fpage":"327","id":"b26a0c3d-089a-452c-8617-f66879549b15","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"34dbbc39-a521-493a-a24e-b0a00e997323","keyword":"自润滑瞋","originalKeyword":"自润滑瞋"},{"id":"6be8101a-21d8-4b50-9e0c-a71d46d2f2ff","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"36090887-717d-458f-a7bf-b4898b202c20","keyword":"氟化物","originalKeyword":"氟化物"},{"id":"42b87233-10b1-499e-983b-72f721bd6808","keyword":"Ag","originalKeyword":"Ag"}],"language":"zh","publisherId":"jsxb201103012","title":"感应烧结制备高温自润滑涂层及其性能研究","volume":"47","year":"2011"},{"abstractinfo":"探讨了摩擦学机敏材料的核心部件聚乙烯基复合导电自润滑材料的制备工艺与电性能,不同方法制得的复合材料的电阻率与导电组分炭黑含量的关系亦表现出很大的差别.与干法相比,湿法电阻率较低,而过渡区组分范围更宽.据此,确定出用作复合导电自润滑材料的炭黑含量宜大于35%(质量,下同),但经实验得出可以自加热发生熔融相变的合适的炭黑含量为40%.加入润滑剂后构成复合导电自润滑材料,通电加热,显示出快速、易控、热性能稳定的自加热熔融性能,实现了复合导电自润滑材料的固-液-固的控制相变.","authors":[{"authorName":"董光能","id":"4520fa73-fb25-46dd-9ad9-802b5b2b21b0","originalAuthorName":"董光能"},{"authorName":"谢友柏","id":"f991216f-36b1-4b87-8942-52b6aa93855f","originalAuthorName":"谢友柏"},{"authorName":"虞烈","id":"ae48c1fe-d9a4-475c-9f39-5291844dbc8a","originalAuthorName":"虞烈"}],"doi":"","fpage":"120","id":"3b5fc02f-d485-42aa-b07e-12ac2e8b90ce","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e8ae45d0-e0aa-4b7e-b500-cbdb3235a5ab","keyword":"摩擦学机敏材料","originalKeyword":"摩擦学机敏材料"},{"id":"458dc45c-4db3-46e1-826f-98d17461bc96","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"59179011-fb79-454c-a713-96f509ab5fc2","keyword":"复合导电自润滑材料","originalKeyword":"复合导电自润滑材料"},{"id":"4c43f38d-a5aa-4f1f-8d5b-788362c18881","keyword":"炭黑","originalKeyword":"炭黑"}],"language":"zh","publisherId":"gfzclkxygc200004034","title":"摩擦学机敏材料中的相变控制润滑剂","volume":"16","year":"2000"},{"abstractinfo":"探讨了摩擦学机敏材料的核心部件聚乙烯基复合导电自润滑材料的制备工艺与电性能,不同方法制得的复合材料的电阻率与导电组分炭黑含量的关系亦表现出很大的差别.与干法相比,湿法电阻率较低,过滤区组分范围更宽.据此,确定出用作复合导电自润滑材料的炭黑含量宜大于35%(质量).但经实验得出可以自加热发生熔融相变的合适的炭黑含量为40%,加入润滑剂后构成复合导电自润滑材料.通电加热,显示出快速、易控、热性能稳定的自加热熔融性能,实现了复合导电自润滑材料的固-液-固的控制相变.","authors":[{"authorName":"董光能","id":"c2939171-3965-46a6-b8c8-b96444f584b1","originalAuthorName":"董光能"},{"authorName":"谢友柏","id":"4b76923b-d40a-4e97-bb39-149ae13efacf","originalAuthorName":"谢友柏"},{"authorName":"虞烈","id":"f769d461-a85e-433e-96af-8b5d66a8a071","originalAuthorName":"虞烈"}],"doi":"","fpage":"133","id":"6b0e8aab-8cf7-4a88-8609-c68c6b34ee35","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8decf7e1-bd6b-4874-9386-3acff53aaec5","keyword":"摩擦学机敏材料","originalKeyword":"摩擦学机敏材料"},{"id":"9a633014-f418-44f3-9307-916f42bc4aa9","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"6430c0a9-e95e-46c1-830f-b4b92b12ac9b","keyword":"复合导电自润滑材料","originalKeyword":"复合导电自润滑材料"},{"id":"0f04d0d7-39ca-4230-bb7e-9f189ffe9c73","keyword":"炭黑","originalKeyword":"炭黑"}],"language":"zh","publisherId":"gfzclkxygc200001040","title":"摩擦学机敏材料中的相变控制润滑剂","volume":"16","year":"2000"},{"abstractinfo":"运用相关系研究了氧气转炉中高磷熔渣对白云石炉衬侵蚀甚烈的原因。 与低磷熔渣比较,高磷熔渣侵蚀白云石中MgO数量相似,对CaO则较强烈。其原因有三: 一、高磷熔渣于1600℃为均质熔液和对CaO反应力很大的非均质熔液,而低磷熔渣则为对CaO反应力很小的非均质熔液; 二、于1600℃下,高磷熔渣有时为二相熔液,低磷熔渣为单相熔液。二相熔液侵夺CaO甚烈; 三、在高磷渣中,SiO_2含量愈大,则CaO饱和量愈大,熔渣侵蚀CaO愈多。在低磷熔渣内无此现象。 对上列缺点,建议在熔渣内提高CaO含量,以资补救。","authors":[{"authorName":"郁国城","id":"4f38fcbb-a07c-4ebe-a833-636b01433f74","originalAuthorName":"郁国城"}],"categoryName":"|","doi":"","fpage":"272","id":"db79bbcf-e04f-48f0-969a-c6d0b65a1208","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1978_3_8","title":"氧气转炉中高磷熔渣对白云石炉衬的侵蚀","volume":"14","year":"1978"},{"abstractinfo":"真空热处理法去除聚碳硅烷(poIycarbosi-lane,PCS)小分子时,因伴随着化学反应导致PCS结构变化而降低其纺丝性能.溶剂浸提法则无此之虞.研究结果表明,不同溶剂对PCS的溶解能力是不同的,依次为:甲醇<二甲基甲酰胺<乙二醇单甲醚<无水乙醇<乙二醇单乙醚<异丙醇<甲酸乙酯<乙酸甲酯<正丙醇.这一溶解能力体现为可溶PCS量的不同和可溶PCS分子量的不同两个方面.溶解能力较大的溶剂可以溶解分子量较大的PCS;溶解量也较多.由于溶剂的这一特性,溶剂浸提法不仅可以用来去除小分子的PCS,而且可以用来调节PCS的分子量及其分布,改善其纺丝性能,提高其原丝强度,而不改变PCS的分子结构.","authors":[{"authorName":"何国梅","id":"f7d9cc6d-c3a5-41f4-a353-68fd2de926bc","originalAuthorName":"何国梅"},{"authorName":"陈江溪","id":"e5572ca8-ad12-4f62-8e16-0a0cd75db3b9","originalAuthorName":"陈江溪"},{"authorName":"廖志楠","id":"2e874147-506a-44c2-9b25-c61a0475608b","originalAuthorName":"廖志楠"},{"authorName":"丁马太","id":"816985f7-f3cb-45f0-b7b0-2cb8f51f837a","originalAuthorName":"丁马太"},{"authorName":"陈立富","id":"1b39e0af-c1c3-4e2f-90e7-c70303c574cb","originalAuthorName":"陈立富"},{"authorName":"夏海平","id":"34f0b06e-5fc7-4e22-b914-468066fc72fb","originalAuthorName":"夏海平"}],"doi":"","fpage":"239","id":"c6dbe177-9158-4347-a789-8f1f447f01b2","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3efd00e4-bb27-48c7-bef9-4732a4ef33ee","keyword":"聚碳硅烷","originalKeyword":"聚碳硅烷"},{"id":"d72ae4f3-6f87-4834-8562-a6ec31a36af3","keyword":"溶剂","originalKeyword":"溶剂"},{"id":"a0c6f864-37f8-41f3-8a1b-efaa8af6033a","keyword":"分子量","originalKeyword":"分子量"},{"id":"b1442666-e4e5-4d77-990d-043843aa9239","keyword":"分子量分布","originalKeyword":"分子量分布"}],"language":"zh","publisherId":"gncl200902018","title":"溶剂浸提法调节聚碳硅烷分子量及其分布的研究","volume":"40","year":"2009"},{"abstractinfo":"在热力学基础上建立了Mg-9Al合金的铸造凝固模型.考察了Mg-9Al合金在铸造凝固条件下的固相分数、体积收缩和微观偏析行为.模拟结果表明,在本凝固条件下,合金实际凝固结束温度在共晶温度附近而不是固相线温度.凝固过程中的体积变化也是非线性的,在凝固初始阶段收缩较大:当剩余液相到达共晶成分时收缩较小.在凝固后期由于发生共晶转变.产生副烈的凝固收缩模拟结果与实验测试相符合.","authors":[{"authorName":"王业双","id":"c3248b03-a860-448c-b654-31e459c27f86","originalAuthorName":"王业双"},{"authorName":"张咏波","id":"81b81355-1d74-41a8-bea5-6ee4e36b7b07","originalAuthorName":"张咏波"},{"authorName":"王渠东","id":"a645b3f1-b5b8-4d0b-85c2-fe3248ae76c3","originalAuthorName":"王渠东"},{"authorName":"马春江","id":"1db42147-4f48-446f-bcee-05d49a1cd27a","originalAuthorName":"马春江"},{"authorName":"丁文江","id":"7de6bd30-0b65-4177-b378-0b50e349741e","originalAuthorName":"丁文江"},{"authorName":"朱燕萍","id":"3201272f-3c48-4efa-8122-f0212e22d7ee","originalAuthorName":"朱燕萍"}],"categoryName":"|","doi":"","fpage":"539","id":"c00c5d5d-6279-4633-8d9b-010eae117f0f","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"6d8768ba-a449-4a42-bf57-3a717b232140","keyword":"Mg-Al合金","originalKeyword":"Mg-Al合金"},{"id":"5a71f0a5-5a27-4875-8748-d927723bcdad","keyword":"null","originalKeyword":"null"},{"id":"e093b59d-377f-4b53-90ad-950939c1570d","keyword":"null","originalKeyword":"null"},{"id":"7a625028-28db-498e-b490-b9539705e36d","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_5_12","title":"Mg-9Al合金铸造凝固模型","volume":"38","year":"2002"}],"totalpage":2,"totalrecord":15}