{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于磁偶极子理论,通过分析两个磁化颗粒处于不同位置时的受力特点及其相对运动趋势,深入而详细的研究了磁流变液的成链机理,说明了铁磁颗粒间的引力分量和斥力分量是导致颗粒聚集并分成多条并列链的原因.同时,模拟了在外加磁场作用下磁流变液的链化结构,证明了形成稳定的链状微结构时磁流变液颗粒间的内部能量最小.","authors":[{"authorName":"李海涛","id":"a03fe501-831a-4094-b907-03456f785740","originalAuthorName":"李海涛"},{"authorName":"彭向和","id":"cc2222be-fa27-413f-8dc3-52b64f61928b","originalAuthorName":"彭向和"},{"authorName":"黄尚廉","id":"65c92558-77ba-4b49-b993-73c81e560cf6","originalAuthorName":"黄尚廉"}],"doi":"","fpage":"902","id":"60cc181d-58ee-411b-ae97-1fe44aef6685","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e5a263ab-a109-4a00-93cf-62a3459a9ceb","keyword":"磁流变液","originalKeyword":"磁流变液"},{"id":"edb5490c-5bb9-491c-b40c-b70d4ac57397","keyword":"链化机理","originalKeyword":"链化机理"},{"id":"e3e21b4f-d0fd-4d62-98c9-e960c198d3bc","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gncl200806008","title":"基于偶极子理论的磁流变液链化机理模拟研究","volume":"39","year":"2008"},{"abstractinfo":"概述了解释磁流变液链化机理的3种理论即磁畴理论、相变理论和偶极矩理论,以及链化机理的定量分析和数值模拟.同时介绍了3种描述磁流变液行为的理论方法和途径即宏观本构描述、微观分析描述和数值模拟描述.上述磁流变液的基础理论研究对优化磁流变材料的配置和设计高性能磁流变装置具有重要意义.","authors":[{"authorName":"李海涛","id":"307d934c-0f57-442b-8f50-38a1bd0dee38","originalAuthorName":"李海涛"},{"authorName":"彭向和","id":"cd63e23a-f1db-4514-bc9d-cc61e121b0dc","originalAuthorName":"彭向和"},{"authorName":"何国田","id":"3e8989bf-19c7-4f35-9e56-229a134316ca","originalAuthorName":"何国田"}],"doi":"","fpage":"121","id":"5ffb7d28-9567-4392-8834-4a2d28d97d3b","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"993757f0-c289-4a7d-9871-0e1eb79c16e4","keyword":"链化机理","originalKeyword":"链化机理"},{"id":"ed53a480-9830-4838-8f18-04370c00c750","keyword":"行为描述","originalKeyword":"行为描述"},{"id":"08ad85d7-d7e0-4fd2-8dfc-1e25e31309c6","keyword":"本构","originalKeyword":"本构"},{"id":"bf7dbe77-f6d4-4988-bae3-e06f6d507954","keyword":"微观分析","originalKeyword":"微观分析"},{"id":"c3226ac2-ad51-452f-8997-b84ebc298b81","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"cldb201003026","title":"磁流变液机理及行为描述的理论研究现状","volume":"24","year":"2010"},{"abstractinfo":"苯乙烯是重要的工业原料,年消耗量约3000万吨。传统工艺中,苯乙烯由乙苯催化脱氢得到。由于传统工艺高能耗,高污染,甲苯与甲醇侧链烷基化合成苯乙烯引起了人们广泛关注,但是目前该路线进入工业化还有很多问题需要解决,甚至催化机理仍不明确。本文对甲苯侧链烷基化机理及提高反应选择性等方面进行了研究。采用离子交换法制备CsX分子筛,在固定床反应器上进行甲苯与氘代甲醇的同位素示踪实验和硝基甲苯的侧链烷基化实验,结合量子计算明确反应机理。采用IGA-002系统测定甲醇在CsX, KX和NaX上的等温吸附线,考察甲醇在分子筛不同笼结构中的吸附情况。将氘代甲苯与甲苯在CsX, KX和活性炭催化下进行氢氘交换实验,检验自由基在不同催化剂上的稳定性。以CO2为载气进行甲苯与甲醇侧链烷基化实验,考察CO2对反应的影响。甲苯与氘代甲醇进行侧链烷基化反应时,大多数氘出现在甲苯上,仅少数氘存在于苯乙烯及乙苯上,表明甲苯氢与甲醇的甲基氘进行了氢氘交换。量子化学计算表明,甲苯与甲醇的氢氘交换沿自由基路径的能垒远小于沿离子路径的。氘代实验和量子计算结果表明,甲苯侧链烷基化过程中存在自由基,但并不能证明侧链烷基化是自由基反应。为了验证甲苯侧链烷基化反应是否为自由基机理,以4-硝基甲苯(NO2-Ph-CH3)代替甲苯与甲醇进行侧链烷基化反应。硝基是强吸电子基团,能稳定苄基负离子,如果甲苯侧链烷基化是离子反应,硝基甲苯侧链烷基化产物收率会升高。另外,硝基又能与活泼自由基生成稳定自由基,若反应为自由基机理,则硝基甲苯不发生侧链烷基化反应。分析结果表明,反应液中不存在侧链烷基化产物,确定了甲苯侧链烷基化反应为自由基机理,而不是离子机理。热力学上甲醇更容易进行生成CO和H2等的副反应,从而减少CH3?与H?碰撞甲醇的几率。甲醇等温吸附线显示甲醇在NaX和KX上的吸附容量相近且远大于CsX上的,表明Cs+阻碍了甲醇进入X分子筛的β-笼。由于甲苯不能进入β-笼, NaX和KX的β-笼内甲醇与甲基自由基接触发生副反应。 CsX催化时Cs+阻碍甲醇进入β-笼而抑制了副反应的发生,提高了甲醇利用率。甲苯与氘代甲苯在CsX, KX和活性炭上进行氢氘交换,反应物用GC-MS分析。结果表明,在CsX上氢氘交换进行得更彻底,在活性炭上几乎没有氢氘交换。 X分子筛活化甲苯为自由基的效果优于活性炭,这可能是推拉效应造成的。当甲苯进入分子筛后, Lewis酸性阳离子与苯环络合并吸引电子,催化剂阴离子骨架与甲苯的甲基作用并供给电子,推电子与吸电子共同作用使甲苯更容易生成苄基自由基,并使其更稳定。 CsX对甲苯的活化作用强于KX,表明CsX的酸碱搭配更有助于甲苯生成自由基。这也是CsX催化甲苯与甲醇侧链烷基化效果优于KX的原因。以CO2替代N2作为载气能显著提高苯乙烯的选择性,这是由于CO2的存在降低了H?和CH3?的浓度,提高了?CH2OH的浓度。?CH2OH与甲苯生成苯乙烯, H?的减少降低了苯乙烯加氢生成乙苯。","authors":[{"authorName":"陈焕辉","id":"319e9e5c-509c-46ca-9598-5a5cdd0c9cbf","originalAuthorName":"陈焕辉"},{"authorName":"李孝慈","id":"7dc40b60-360c-40db-96ba-b6eacbbfec73","originalAuthorName":"李孝慈"},{"authorName":"赵国庆","id":"c6a8dae4-994e-47be-9c49-08a7ccb1b2a0","originalAuthorName":"赵国庆"},{"authorName":"谷红波","id":"8ad861b6-ba01-46ce-b5d1-6876ab6ab415","originalAuthorName":"谷红波"},{"authorName":"朱志荣","id":"7a58c13a-a261-4969-a848-b8c904ef955d","originalAuthorName":"朱志荣"}],"doi":"10.1016/S1872-2067(15)60896-8","fpage":"1726","id":"0e3b8934-3136-47fb-8a2e-c2ecf1b5b7ac","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9fefa1f6-090b-4564-a6e7-20db325ba389","keyword":"甲苯","originalKeyword":"甲苯"},{"id":"d959752a-0bf3-46dc-b389-ad4987a87672","keyword":"侧链烷基化","originalKeyword":"侧链烷基化"},{"id":"ca016a03-682e-4f77-ad8a-3e6a5502136d","keyword":"自由基机理","originalKeyword":"自由基机理"},{"id":"bdc4106f-636f-4bcd-b9db-7b6f2b2c2439","keyword":"X分子筛","originalKeyword":"X分子筛"},{"id":"ab28002c-4d55-4df9-9432-f88e9203025d","keyword":"苯乙烯","originalKeyword":"苯乙烯"},{"id":"cf573978-83bf-4bfe-9a3a-50e87677222c","keyword":"同位素示踪","originalKeyword":"同位素示踪"}],"language":"zh","publisherId":"cuihuaxb201510011","title":"碱性X分子筛催化甲苯与甲醇侧链烷基化自由基机理研究","volume":"","year":"2015"},{"abstractinfo":"侧链功能化的聚酰亚胺是一类特殊的高性能聚合物,可用来制备非线性光学材料、绝缘薄膜、耐高温气液分离膜、射线屏蔽膜、柔性印刷电路板基膜和宇航材料等,用于航天航空、国防军工、电子、电机电器、核动力等各个工业领域.本文就近10年来国内外对聚酰亚胺侧链功能化的研究现状和应用前景进行了综述.","authors":[{"authorName":"范浩军","id":"86bc1335-cb64-41b6-a004-7434a4d62a5c","originalAuthorName":"范浩军"},{"authorName":"黄毅","id":"ebdbbcb4-604d-41ec-891e-86d125089a6f","originalAuthorName":"黄毅"},{"authorName":"顾宜","id":"fa9ba93b-0add-4361-95cf-3fc64dc5e972","originalAuthorName":"顾宜"}],"doi":"","fpage":"24","id":"7692fab6-256b-4d1a-b944-c40e1b3d735b","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d4706495-4656-4e5f-a77d-bd8040bf0650","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"288c1f1c-df7b-4e79-9aa7-8570026c9981","keyword":"侧链功能化","originalKeyword":"侧链功能化"},{"id":"b2ce7333-dd41-4f86-ba4b-80900e3fe9f3","keyword":"高性能材料","originalKeyword":"高性能材料"},{"id":"f0d1fadb-cf39-473e-a401-ada154245e77","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"gfzclkxygc200001008","title":"聚酰亚胺的侧链功能化","volume":"16","year":"2000"},{"abstractinfo":"介绍了纳米SiO2粒子链补强硅橡胶的机理.主要是因为纳米粒子链与聚硅氧烷分子链缠结和吸附,进行了无机与有机分子链水平的复合,复合体能随着基体形变而通过自身的屈服变形过程吸收大量的能量,从而补强硅橡胶.","authors":[{"authorName":"庄清平","id":"304da6d0-831d-42f4-bb04-7bf4112fd598","originalAuthorName":"庄清平"}],"doi":"10.3969/j.issn.1000-3738.2004.05.016","fpage":"46","id":"f790e391-7d9d-4db3-a93a-e01ce6747372","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"53c9506b-1d91-46e9-b075-17082e3120b2","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"681931e6-5422-470e-ac13-7938c6207330","keyword":"纳米粒子链","originalKeyword":"纳米粒子链"},{"id":"fcf27c75-6a89-4d9f-81f6-f35b5168478e","keyword":"聚硅氧烷","originalKeyword":"聚硅氧烷"},{"id":"4e2be668-d74b-4f47-9b7a-5dfad82902db","keyword":"硅橡胶","originalKeyword":"硅橡胶"}],"language":"zh","publisherId":"jxgccl200405016","title":"纳米SiO2粒子链对硅橡胶的补强机理","volume":"28","year":"2004"},{"abstractinfo":"本文在低温太阳热能与CH3OH-Fe2O3化学链燃烧相结合控制CO2分离动力系统的基础上,进一步探讨了低温太阳热能品位提升的内在规律,分别揭示出辐照强度与CH3OH-Fe2O3反应特性、低温太阳热能品位提升的关联关系.本文采用溶胶凝胶法制作了Fe2O3反应颗粒,在热重反应器中进行了模拟太阳热能与甲醇化学链实验的初步研究,通过电镜,分析了反应前后金属氧化物的表面形貌特征.研究成果将为低温太阳热能与化学链燃烧整合能量释放新机理的研究提供理论依据和基础实验数据.","authors":[{"authorName":"何鹏","id":"af2edc49-1a14-464c-b257-345b6bfeedc3","originalAuthorName":"何鹏"},{"authorName":"洪慧","id":"8501e9d8-8c6c-4cf7-bf8b-49f0ab398be4","originalAuthorName":"洪慧"},{"authorName":"金红光","id":"81cc442d-3a83-4ce0-9270-3e7225e6e9d6","originalAuthorName":"金红光"},{"authorName":"喻之昂","id":"b84327cd-41e3-4707-befb-6fcb46163ecb","originalAuthorName":"喻之昂"}],"doi":"","fpage":"181","id":"fde65054-46f1-4f81-84ed-90e213e83056","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e0a440ea-cac9-4cec-8fbb-89968034aef1","keyword":"低温太阳热能","originalKeyword":"低温太阳热能"},{"id":"eebc15e4-e9d9-4966-9982-8594d0cbf3e6","keyword":"甲醇化学链燃烧","originalKeyword":"甲醇化学链燃烧"},{"id":"5d40cc4a-bb70-4ffa-a3e3-7c335805a765","keyword":"品位提升","originalKeyword":"品位提升"}],"language":"zh","publisherId":"gcrwlxb200702001","title":"低温太阳热与甲醇化学链整合能量释放机理实验初探","volume":"28","year":"2007"},{"abstractinfo":"文中采用巯基功能化离子液体作为稳定剂、硼氢化钠作为还原剂的湿化学制备方法,在室温条件下制备出单晶金纳米粒子链.根据紫外-可见吸收光谱、透射电子显微镜和X射线衍射结构表征说明产物是链状的单晶纳米金.","authors":[{"authorName":"张树霞","id":"86ab2a39-d2d3-4811-89af-e080b56d183f","originalAuthorName":"张树霞"},{"authorName":"高书燕","id":"75f7a895-c391-480e-8aca-fbee5f02590b","originalAuthorName":"高书燕"},{"authorName":"张洪杰","id":"042902f1-1788-4faf-adff-38055a2c1d36","originalAuthorName":"张洪杰"}],"doi":"10.3969/j.issn.1001-1277.2008.01.002","fpage":"9","id":"7d90499b-b6d8-4474-b705-c42a6e75e7c7","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"a0428438-00f8-4b84-b4b1-bc6400657a05","keyword":"单晶金","originalKeyword":"单晶金"},{"id":"ea6fe92a-2525-4780-8951-56f209f101bf","keyword":"纳米粒子链","originalKeyword":"纳米粒子链"},{"id":"8e8ed8d1-f602-42b2-8528-f531053d1ddc","keyword":"巯基功能化离子液体","originalKeyword":"巯基功能化离子液体"},{"id":"02ec4f8c-7941-4fb7-8433-274ae484a81c","keyword":"湿化学方法","originalKeyword":"湿化学方法"}],"language":"zh","publisherId":"huangj200801002","title":"巯基功能化离子液体辅助制备单晶金纳米粒子链","volume":"29","year":"2008"},{"abstractinfo":"基于链化模型的磁流变弹性体,在受到压缩形变时,基体中的颗粒链会弯曲变形,变形后相邻颗粒间的相互作用力沿压缩方向和垂直于压缩方向的分量均不同。分析了压缩模式下链弯曲对磁流变弹性体磁致压缩模量的影响。随着磁场强度和压缩应变的增大,磁流变弹性体的磁致压缩模量在压缩方向的磁致力分量和垂直于压缩方向的磁致回复力的共同作用下逐渐变大。","authors":[{"authorName":"郑星","id":"46635ef7-565e-4438-931e-f43c51bcf354","originalAuthorName":"郑星"},{"authorName":"浮洁","id":"8e8788ee-49c4-4316-9fa5-39abad21f940","originalAuthorName":"浮洁"},{"authorName":"余淼","id":"d193b608-6121-40b7-a9e4-5349fe8c198a","originalAuthorName":"余淼"},{"authorName":"居本祥","id":"552f1ff4-4138-4aa9-9b20-ac0a7a5ab529","originalAuthorName":"居本祥"},{"authorName":"杨其","id":"a7192bb7-ae8a-4ddf-9938-90b8800aa18d","originalAuthorName":"杨其"}],"doi":"","fpage":"2056","id":"3c6006b7-f853-4e34-8188-349919074514","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bea5e972-2e7d-4e80-86a1-2b6260f077f3","keyword":"磁流变弹性体","originalKeyword":"磁流变弹性体"},{"id":"ff7b64e3-2b31-4d74-b33e-7070785fb3b5","keyword":"压缩弯曲","originalKeyword":"压缩弯曲"},{"id":"ef625bdd-8a5b-45af-8a7e-2dbc2c919a97","keyword":"磁致力","originalKeyword":"磁致力"},{"id":"6255e175-e189-4df3-9504-0886cf7832c3","keyword":"磁致压缩模量","originalKeyword":"磁致压缩模量"}],"language":"zh","publisherId":"gncl201215021","title":"基于链化模型的磁流变弹性体磁致压缩模量分析","volume":"43","year":"2012"},{"abstractinfo":"回转窑结圈是一个复杂的过程,一直困扰着链篦机-回转窑球团工艺的发展.为深入研究回转窑结圈的机理和影响因素,针对煤气供热氧化球团回转窑结圈,将回转窑分为窑头、窑中、窑尾3段,根据每段回转窑结圈的特征,分别研究了各段结圈形成的原因及影响因素,并提出相应的缓解回转窑结圈的措施.","authors":[{"authorName":"范晓慧","id":"bf21d8b8-bf30-4622-9867-7c8b0856d481","originalAuthorName":"范晓慧"},{"authorName":"甘敏","id":"9d4cc2e5-1ca5-4409-9060-e62efa23269e","originalAuthorName":"甘敏"},{"authorName":"袁礼顺","id":"76adaa38-25a6-47c0-8a85-7fc30bff33e2","originalAuthorName":"袁礼顺"},{"authorName":"李光辉","id":"bd17e158-409b-4e35-93c5-0e5a9be548ac","originalAuthorName":"李光辉"},{"authorName":"姜涛","id":"1a50a85a-a2cc-4cff-8db5-12331ffe3954","originalAuthorName":"姜涛"},{"authorName":"庄剑鸣","id":"6dc2ca94-5d46-425d-b3d0-ddc78dec4fcd","originalAuthorName":"庄剑鸣"}],"doi":"","fpage":"15","id":"31da2150-fe58-4cc6-bb99-4860933ae81d","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"403cb06e-3609-4e94-8d4f-9b0b353379c1","keyword":"煤气供热","originalKeyword":"煤气供热"},{"id":"05958a0c-91b4-4c18-b6bd-95614ca60268","keyword":"氧化球团","originalKeyword":"氧化球团"},{"id":"de754a2f-1b6f-4dbc-8963-7d436590dfb3","keyword":"回转窑","originalKeyword":"回转窑"},{"id":"85027a14-4dc3-47c3-abca-c1757342aba7","keyword":"结圈","originalKeyword":"结圈"},{"id":"a9876012-2c19-4eaa-bfb0-4b6df600a924","keyword":"固结强度","originalKeyword":"固结强度"}],"language":"zh","publisherId":"gt200803003","title":"氧化球团链篦机-回转窑结圈机理的研究","volume":"43","year":"2008"},{"abstractinfo":"回转窑结圈是一个复杂的过程,一直困扰着链篦机-回转窑球团工艺的发展。为深入研究回转窑结圈的机理和影响因素,针对煤气供热氧化球团回转窑结圈,将回转窑分为窑头、窑中、窑尾3段,根据每段回转窑结圈的特征,分别研究了各段结圈形成的原因及影响因素,并提出相应的缓解回转窑结圈的措施。","authors":[{"authorName":"范晓慧","id":"0fbcf028-f325-4d6b-871e-ee4de0f28093","originalAuthorName":"范晓慧"},{"authorName":"甘敏","id":"d85f0a2e-fb94-4cdd-a088-8e7073041406","originalAuthorName":"甘敏"},{"authorName":"袁礼顺","id":"6c9b4d46-8fd7-48be-89c5-2bffadea5b10","originalAuthorName":"袁礼顺"},{"authorName":"李光辉","id":"6d6a4301-ad16-4194-b73f-1f29b56a4b4e","originalAuthorName":"李光辉"},{"authorName":"姜涛","id":"a31c4c8a-3987-48dc-8040-dd1a1fa34849","originalAuthorName":"姜涛"},{"authorName":"庄剑鸣","id":"d055fd0c-b69f-44e3-b92d-4506beab9a95","originalAuthorName":"庄剑鸣"}],"categoryName":"|","doi":"","fpage":"15","id":"4f295396-2e3e-43ae-bec5-304275ed61af","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4b429ee6-63c2-4706-8dcf-a48b9f7269ff","keyword":"煤气供热;氧化球团;回转窑;结圈;固结强度","originalKeyword":"煤气供热;氧化球团;回转窑;结圈;固结强度"}],"language":"zh","publisherId":"0449-749X_2008_3_10","title":"氧化球团链篦机—回转窑结圈机理的研究","volume":"43","year":"2008"}],"totalpage":4422,"totalrecord":44215}