{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用电沉积法在过滤阴极真空电弧技术合成的掺磷四面体非晶碳(ta-C∶P)薄膜表面沉积纳米金团簇,制备纳米金修饰的掺磷非晶碳(Au/ta-C∶P)薄膜电极.利用X射线光电子能谱、拉曼光谱、扫描电子显微镜和电化学伏安法表征ta-C∶P和Au/ta-C∶P的微观结构、表面形貌和电化学行为.结果表明,-80V的脉冲偏压更利于磷原子进入碳的网络,并明显增加薄膜的电导率和电化学活性.纳米金团簇可增加ta-C∶P电极的有效面积,提高对铁氰化钾氧化还原反应的活性和电极可逆性,增强对多巴胺的催化活性.研究结果揭示ta-C∶P和Au/ta-C∶P薄膜在电分析及生物传感器方面的潜在应用.","authors":[{"authorName":"刘爱萍","id":"40405944-47bb-4d72-94a7-91d475fba4c2","originalAuthorName":"刘爱萍"},{"authorName":"朱嘉琦","id":"cd588e77-b3dc-475a-876b-ebae5d126192","originalAuthorName":"朱嘉琦"},{"authorName":"韩杰才","id":"c3c4a2d8-d8fe-4dfd-8a2c-0fc8db28df81","originalAuthorName":"韩杰才"}],"doi":"","fpage":"363","id":"0402dc95-a223-4959-86a4-3b456df9a46a","issue":"5","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"306eebb4-4590-4f94-9cc0-af6d915b2f9f","keyword":"掺磷四面体非晶碳电极","originalKeyword":"掺磷四面体非晶碳电极"},{"id":"b979ab86-6d77-45f6-9976-4ba340d18056","keyword":"纳米金团簇","originalKeyword":"纳米金团簇"},{"id":"65b5a41f-a5d3-4786-abb5-6711d08d8ffe","keyword":"过滤阴极真空电弧","originalKeyword":"过滤阴极真空电弧"},{"id":"d84b243b-ee7a-4fa3-9fb3-aaa9533ae3ba","keyword":"电化学活性","originalKeyword":"电化学活性"},{"id":"64c4f603-9b60-4b49-bb84-b76170be8d9d","keyword":"巴多胺","originalKeyword":"巴多胺"},{"id":"aff9bf6d-9d39-4aa4-9415-c860aebc10eb","keyword":"生物传感器","originalKeyword":"生物传感器"}],"language":"zh","publisherId":"xxtcl201005008","title":"纳米金增强掺磷四面体非晶碳膜的电化学活性","volume":"25","year":"2010"},{"abstractinfo":"用分子团簇法计算了三种边界条件下单层纳米碳管的电子结构依靠得到的态密度、能级、分子轨道和结合能,对合成纳米尺度器件时可能出现的结果进行了预测","authors":[{"authorName":"周刚","id":"3bc9e7a0-7a4d-4eb1-b94a-8d5345574e9a","originalAuthorName":"周刚"},{"authorName":"王山鹰","id":"fff64906-1a2a-4353-90ad-eb06a7766727","originalAuthorName":"王山鹰"},{"authorName":"朱嘉麟","id":"a3b27ce9-f690-4950-8c86-39c3f5930d0a","originalAuthorName":"朱嘉麟"}],"doi":"10.3321/j.issn:1005-3093.2001.01.015","fpage":"91","id":"b02a8b29-dea8-4635-9dbb-a58ca82567dc","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1009edd8-e0fb-4568-bd76-25607c226025","keyword":"团簇法","originalKeyword":"团簇法"},{"id":"55082da5-7aa0-46ad-9f35-9e79da81e3fd","keyword":"单层纳米碳管","originalKeyword":"单层纳米碳管"},{"id":"405447b2-3cde-4575-b90e-18d4ec39a46a","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"8978efeb-de8c-4dad-931e-153e4c62b3b8","keyword":"边界条件","originalKeyword":"边界条件"}],"language":"zh","publisherId":"clyjxb200101015","title":"用团簇法计算单层纳米碳管的电子结构","volume":"15","year":"2001"},{"abstractinfo":"
基于Finemet合金的成分及其非晶前驱体的晶化特征,提出了Finemet型合金的“双团簇”结构模型和团簇式成分,即Finemet合金的非晶前驱体可看作由2类团簇结构构成:一种为基于α-Fe(Si)有序固溶体(例如Fe3Si相)的[Si-Fe14](Cu1/13Si12/13)3弱稳定团簇结构;另一种为对应于Fe-B-Si-Nb系块体非晶合金的[(Si, B)-B2(Fe, Nb)8]Fe强稳定团簇结构。将2种团簇成分式按等比例混合,设计并制备了多个新成分合金。热分析和磁性测量结果表明,所有成分的非晶样品均显示多峰晶化特征,其中,[(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe+[Si-Fe14](Cu1/13Si12/13)3 (即Fe74B7.33Si15.23Nb2.67Cu0.77)非晶两晶化峰的峰间距(ΔTp=Tp2-Tp1)最大,约为192 K。该非晶样品在813 K等温退火60 min后获得典型的纳米晶/非晶复相结构,其饱和磁化强度Bs约为1.26 T,矫顽力Hc约为0.5 A/m,1 kHz下的有效磁导率μe约为8.5×105。新成分纳米晶合金的综合软磁性能均优于典型成分为Fe73.5Si13.5B9Cu1Nb3的已有Finemet纳米晶合金。
","authors":[{"authorName":"耿遥祥","id":"8115945d-30df-4428-af04-545487905dd0","originalAuthorName":"耿遥祥"},{"authorName":"林鑫","id":"d16cce8e-e9cc-4250-a726-e70e4da0615d","originalAuthorName":"林鑫"},{"authorName":"羌建兵","id":"26f57981-dff1-4a50-8935-1738866bda6a","originalAuthorName":"羌建兵"},{"authorName":"王英敏","id":"72d62871-3fa2-470e-8abd-b400a0ea9420","originalAuthorName":"王英敏"},{"authorName":"董闯","id":"1ced2f90-8856-4e1f-b37e-0cb7dd23e735","originalAuthorName":"董闯"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00546","fpage":"833","id":"0bee5702-8edb-438d-85f3-2c1dc004181a","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ee661d77-9e9f-4323-ba37-dcc6efef8055","keyword":"Finemet纳米晶合金","originalKeyword":"Finemet纳米晶合金"},{"id":"f4259676-8732-4b6f-81c2-03bac60c5d6f","keyword":"“双团簇”模型","originalKeyword":"“双团簇”模型"},{"id":"e69615ff-d7f9-48e2-b1ae-83c1abfeb8ef","keyword":"成分设计","originalKeyword":"成分设计"},{"id":"f516f4a6-5f44-40fd-81c3-017ab34c9773","keyword":"软磁性能","originalKeyword":"软磁性能"}],"language":"zh","publisherId":"C20160546","title":"Finemet型纳米晶软磁合金的双团簇特征与成分优化","volume":"53","year":"2017"},{"abstractinfo":"采用基于密度泛函理论的第一性原理计算方法系统地对Aun(n≤8)吸附在MgO(001)表面的结构进行了详细的研究.分别给出了气相的Aun(n≤13)和吸附在MgO表面的Aun(n≤8)团簇的最稳定结构,比较了这两种情况下,Aun在结构、平均键长和磁矩方面的区别.结果表明,气相的Aun,在n≤13时团簇均为平面结构,而Aun吸附在MgO(001)表面上之后,从AU7就开始出现从平面结构向立体结构转变.吸附在MgO(001)表面上的Aun团簇在较小尺寸就发生二维到三维结构转变的原因可能是An键长与MgO(001)表面的晶格失配造成的.吸附在MgO(001)表面的团簇因受到表面极化而使得团簇上电荷分布发生变化,但是表面衬底和团簇之间的电荷转移量很小.","authors":[{"authorName":"刘靖","id":"196472e6-52b8-4c4d-b5b1-3192cd5aceb3","originalAuthorName":"刘靖"},{"authorName":"李顺方","id":"4e0dffa8-a573-49c6-8cd4-396102bb56e0","originalAuthorName":"李顺方"},{"authorName":"李海生","id":"21dbcb68-9d61-416e-8330-032657baa9cb","originalAuthorName":"李海生"}],"doi":"","fpage":"232","id":"851c56ba-683c-4f74-b687-3435cc772b06","issue":"Z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2eb7a2f8-13bf-41ce-ad07-a034cd95fc23","keyword":"吸附能","originalKeyword":"吸附能"},{"id":"540dda99-44cf-42d6-888c-65ccd32cba19","keyword":"计算模拟","originalKeyword":"计算模拟"},{"id":"fb2e8a30-029b-4484-8e03-d300a92a7a15","keyword":"晶格失配","originalKeyword":"晶格失配"}],"language":"zh","publisherId":"cldb2008Z2068","title":"金团簇Aun(n≤8)吸附在MgO(001)表面的第一性原理计算研究","volume":"22","year":"2008"},{"abstractinfo":"采用微波辅助溶剂热法制备了纳米Fe3O4团簇,其中乙二醇和二甘醇作为反应溶剂和还原剂,乙酸钠和聚乙烯吡咯烷酮(PVP)作为表面活性剂和稳定剂.采用X射线衍射仪(XRD)、透射电镜(TEM)对样品的结构和形貌进行了表征,利用样品振动磁强计(VSM)对样品的磁学性能进行了表征.结果表明,微波加热2h和4h,获得的是尺寸为40 ~ 50 nm的纳米Fe3O4团簇,而在微波加热5 min的条件下,获得的是10 nm的Fe3O4纳米颗粒.所制备样品在室温下表现出超顺磁性.","authors":[{"authorName":"刘文宝","id":"d28b42a1-ca05-4b07-b3ad-556a2d999803","originalAuthorName":"刘文宝"},{"authorName":"杨筱筱","id":"44758991-1f03-4a34-bf0f-20b874d8fa93","originalAuthorName":"杨筱筱"},{"authorName":"柳瑞翠","id":"0251b483-f0f8-4518-a6d6-7ed76dd4b52a","originalAuthorName":"柳瑞翠"},{"authorName":"张潇予","id":"7fccabb6-1425-4ed7-a534-2573171254a3","originalAuthorName":"张潇予"},{"authorName":"刘子全","id":"637f038b-89d0-493e-ba86-84502251fe47","originalAuthorName":"刘子全"},{"authorName":"姜付义","id":"39f4644b-0175-4fb6-8c82-58d339b27293","originalAuthorName":"姜付义"}],"doi":"","fpage":"1020","id":"82015622-0feb-45e3-8b28-e7591fca62b6","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"adb871c5-828f-45a3-8c84-374a4dbba69f","keyword":"微波辅助","originalKeyword":"微波辅助"},{"id":"89fda730-69e1-4e9c-aca8-c169cead8c5e","keyword":"溶剂热","originalKeyword":"溶剂热"},{"id":"c2e29624-247b-4c0b-90c2-2bede3a150e2","keyword":"Fe3O4团簇","originalKeyword":"Fe3O4团簇"},{"id":"3b58fbfb-8132-4655-8b42-0a102bbad0af","keyword":"超顺磁性","originalKeyword":"超顺磁性"}],"language":"zh","publisherId":"rgjtxb98201504029","title":"微波辅助溶剂热法制备纳米Fe3O4团簇","volume":"44","year":"2015"},{"abstractinfo":"应用正则系综分子动力学方法和嵌入原子势函数, 模拟计算了在升温过程中纳米尺度铜团簇Cun(原子数n=531, 603, 683)原子径向密度分布函数ρ(r)及原子的平均能量随温度的变化. 在将团簇沿其径向分为表层、近表层、内层I和内层II四个区域后, 研究了在升温过程中纳米尺度铜团簇表层及内部区域结构变化.结果表明, 团簇Cu603在温度为770 K时团簇表层区域原子的结构部分处于无序状态, 部分保持有序结构, 且这种有序和无序共存的状态一直持续到1000 K, 而在这一温度区间内, 近表层和内层原子的结构仍总体保持有序结构;在1000—1100 K温度区间内, 各区域原子的平均能量均经历一个N形变化后,当温度为1080 K时团簇各区域内原子的结构已变为无序, 但沿径向方向表现为层状分布; 直到1500 K时, 团簇的层状分布特征消失. 团簇Cu531和Cu683具有相似的结果.","authors":[{"authorName":"徐送宁","id":"00f52f86-6c60-45e4-ac89-95d8a50676f3","originalAuthorName":"徐送宁"},{"authorName":"张林","id":"faa3be21-83af-4414-904b-f2dd755d13c1","originalAuthorName":"张林"},{"authorName":"张彩碚","id":"035f8167-8956-4143-804f-3ce4d2c28c73","originalAuthorName":"张彩碚"},{"authorName":"祁阳","id":"fbe5ae6e-9d8f-4d70-8215-7b885bcadc3c","originalAuthorName":"祁阳"}],"categoryName":"|","doi":"","fpage":"379","id":"0da29e3a-b2b0-457f-99ef-2dcd5c5a8b13","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2f03e84d-61c4-4a7a-8aee-5f2a206d3ea3","keyword":"铜团簇","originalKeyword":"铜团簇"},{"id":"c21a66fa-cdbf-4718-80a9-4d28e546a608","keyword":"molecular dynamics ","originalKeyword":"molecular dynamics "},{"id":"a7b16859-8843-49ea-b758-75ced105df5c","keyword":"canonical","originalKeyword":"canonical"}],"language":"zh","publisherId":"0412-1961_2007_4_18","title":"纳米尺度铜团簇在升温过程中结构变化的分子动力学研究","volume":"43","year":"2007"},{"abstractinfo":"应用正则系综分子动力学方法和嵌入原子势函数,模拟计算了在升温过程中纳米尺度铜团簇Cun(原子数n=531,603,683)原子径向密度分布函数ρ(r)及原子的平均能量随温度的变化.在将团簇沿其径向分为表层、近表层、内层Ⅰ和内层Ⅱ四个区域后,研究了在升温过程中纳米尺度铜团簇表层及内部区域结构变化.结果表明,团簇Cu603在温度为770 K时团簇表层区域原子的结构部分处于无序状态,部分保持有序结构,且这种有序和无序共存的状态一直持续到1000 K,而在这一温度区间内,近表层和内层原子的结构仍总体保持有序结构;在1000-1100 K温度区间内,各区域原子的平均能量均经历一个N形变化后,当温度为1080 K时团簇各区域内原子的结构已变为无序,但沿径向方向表现为层状分布;直到1500 K时,团簇的层状分布特征消失.团簇Cu531和Cu683具有相似的结果.","authors":[{"authorName":"徐送宁","id":"b159dbfa-28b7-4f11-ab74-fba540cf882f","originalAuthorName":"徐送宁"},{"authorName":"张林","id":"8f8bde05-df88-4f1f-8825-68877bbb1c57","originalAuthorName":"张林"},{"authorName":"张彩碚","id":"15729d53-f44e-4116-b00b-ad24e167a2cd","originalAuthorName":"张彩碚"},{"authorName":"祁阳","id":"9a856533-a7e8-4c32-ae75-39729493057c","originalAuthorName":"祁阳"}],"doi":"10.3321/j.issn:0412-1961.2007.04.009","fpage":"379","id":"28cb0762-3d23-469f-aaa4-b6effa845121","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c70a6527-7d41-4e70-a599-a878c2d8da4d","keyword":"铜团簇","originalKeyword":"铜团簇"},{"id":"64e8e257-628a-4687-bcd4-2468eab27536","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"e1322cdb-d784-4810-bf91-8d3b53dc9ed2","keyword":"正则系综","originalKeyword":"正则系综"},{"id":"2a53182e-bdb0-4b3e-95d4-054cc84bac6a","keyword":"结构变化","originalKeyword":"结构变化"}],"language":"zh","publisherId":"jsxb200704009","title":"纳米尺度铜团簇在升温过程中结构变化的分子动力学研究","volume":"43","year":"2007"},{"abstractinfo":"利用酯端基聚酰胺-胺(PAMAM)树形分子为模板,以N,N-二甲基甲酰胺(DMF)为溶剂,用硼氢化钠还原氯化金制备了树形分子封装的金纳米簇复合物.UV-vis光谱和TEM表征研究表明,分子代数越大,制备的金纳米粒子直径越小,粒径分布越均匀,在DMF溶剂中越稳定.","authors":[{"authorName":"潘碧峰","id":"2ff00651-c2a6-498d-a6bf-83d59615a32a","originalAuthorName":"潘碧峰"},{"authorName":"高峰","id":"e948dc87-e431-4df4-891e-98158017ed93","originalAuthorName":"高峰"},{"authorName":"古宏晨","id":"757e9942-b506-43f8-813e-22abab3be1ce","originalAuthorName":"古宏晨"}],"doi":"","fpage":"224","id":"28b5379c-0d33-42e2-ba9d-b446b3e4a1f7","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a6b53c2c-02da-45a1-a357-57b3edf58790","keyword":"PAMAM树形分子","originalKeyword":"PAMAM树形分子"},{"id":"67703485-0733-46e4-8ccd-a821cfe65fc2","keyword":"金纳米簇,模板","originalKeyword":"金纳米簇,模板"}],"language":"zh","publisherId":"gfzclkxygc200506057","title":"以树形分子为模板制备金纳米簇及其表征","volume":"21","year":"2005"},{"abstractinfo":"利用飞秒激光和飞行时间质谱结合从头计算对吡啶团簇的多光子电离和离解进行了研究. 给出了吡啶团簇的稳定结构和簇内的质子转移过程. ","authors":[{"authorName":"张柏林","id":"a0c3a101-1730-47c4-aa66-7776bcd6114f","originalAuthorName":"张柏林"},{"authorName":"牟晓兰","id":"27e1c7ce-9b1c-4b43-a2ec-915a6daf5803","originalAuthorName":"牟晓兰"},{"authorName":"金艳玲","id":"0450353f-0efa-4416-8c2a-b4422c0e6c38","originalAuthorName":"金艳玲"},{"authorName":"楼南泉","id":"a89263fd-b121-411b-9dc6-ccfccd944eb5","originalAuthorName":"楼南泉"},{"authorName":"王秀岩","id":"6b66a2ae-2577-4198-a3d6-b4b682d8b27e","originalAuthorName":"王秀岩"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.035","fpage":"118","id":"483f444d-b1e2-4470-8eb8-48509116daf3","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"25d4acbb-fe67-472c-a921-433288993d5a","keyword":"飞秒激光","originalKeyword":"飞秒激光"},{"id":"d0806b69-9e90-49f3-a14a-751940bd3663","keyword":"分子团簇","originalKeyword":"分子团簇"},{"id":"361c22cb-83d7-43d6-a1ab-beb0fc0875a3","keyword":"吡啶","originalKeyword":"吡啶"},{"id":"fc3c9cf1-f862-44e2-8807-474d68ccd0c5","keyword":"从头计算","originalKeyword":"从头计算"}],"language":"zh","publisherId":"yzhwlpl2002z1035","title":"吡啶团簇的多光子电离和离解研究","volume":"19","year":"2002"},{"abstractinfo":"研究了每核子能量为260-450 keV的H+2, H+3, H+4 H+5和 H+7团簇离子在金膜中的能损. 发现团簇离子中平均每个质子的能损大于相同速度的单质子能损, 即能损比大于1, 且随团簇离子的大小和速度的增加而增加. ","authors":[{"authorName":"杨朝文","id":"d225b57c-a329-4b43-af6d-2f9f105e665d","originalAuthorName":"杨朝文"},{"authorName":"缪竞威","id":"b835c4fe-dbe7-4080-96f4-7795485ff844","originalAuthorName":"缪竞威"},{"authorName":"杨百方","id":"ed1b26a8-2c75-4b0c-8118-81b0cd78e185","originalAuthorName":"杨百方"},{"authorName":"师勉恭","id":"357f1a5d-a10b-4d1b-a07b-2009d8a38209","originalAuthorName":"师勉恭"},{"authorName":"刘晓东","id":"cfe255e7-f4ba-442d-a3f5-aea3f4c44c2a","originalAuthorName":"刘晓东"}],"doi":"10.3969/j.issn.1007-4627.2002.02.041","fpage":"231","id":"4272cc56-7fa3-4908-97aa-531e72d8a2fe","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"730476a9-e786-4f07-a12d-d667507d43a8","keyword":"团簇","originalKeyword":"团簇"},{"id":"5d0ccc7d-15fa-498b-abaf-c48f58731c65","keyword":"能损","originalKeyword":"能损"},{"id":"1cd2e145-f172-4da9-9427-a8aec5e5406a","keyword":"非线性效应","originalKeyword":"非线性效应"}],"language":"zh","publisherId":"yzhwlpl200202041","title":"团簇离子在固体中能损的非线性效应","volume":"19","year":"2002"}],"totalpage":2811,"totalrecord":28104}