{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用反相高效液相色谱(RP-HPLC)-脉冲电化学检测(PED)法测定了重组人生长激素(rhGH)中的诱导剂异丙基-β-D-硫代半乳糖苷(IPTG).rhGH样品经超滤离心后,用超纯水提取,经C18色谱柱分离,用脉冲电化学器检测.结果表明,样品中添加0.02~0.10 mg/L 的IPTG,其回收率为100%~102%,相对标准偏差(n=3)小于10%.在优化的条件下,IPTG的检出限可达1 μg/L(0.1 pmol, 25 μL).该方法简便高效,具有良好的灵敏度、回收率和重复性.","authors":[{"authorName":"王荔","id":"e05d722f-2430-4757-8547-e4e7dea46acb","originalAuthorName":"王荔"},{"authorName":"林碧蓉","id":"01c2e41e-fd3b-435d-80bc-474039be04b9","originalAuthorName":"林碧蓉"}],"doi":"10.3724/SP.J.1123.2016.10037","fpage":"308","id":"a229ade4-f717-42fb-b014-cc77470dad89","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"0fd7e79c-458a-4e17-9332-8e2e80e4d5e2","keyword":"反相高效液相色谱法","originalKeyword":"反相高效液相色谱法"},{"id":"0745b5e3-aa4d-4131-b76a-c6cf867f0838","keyword":"脉冲电化学检测","originalKeyword":"脉冲电化学检测"},{"id":"d0efb953-bf49-40fd-b510-928c5438c8cd","keyword":"巯基","originalKeyword":"巯基"},{"id":"18a3e7a3-e084-4c4e-80da-8170534fc4ac","keyword":"硫化学","originalKeyword":"含硫化学物"},{"id":"8ee36d97-47e9-4820-8d84-d142179d0887","keyword":"异丙基-β-D-硫代半乳糖苷","originalKeyword":"异丙基-β-D-硫代半乳糖苷"},{"id":"296d6612-3e6b-4b27-b1d0-f77e63c40c72","keyword":"重组人生长激素","originalKeyword":"重组人生长激素"}],"language":"zh","publisherId":"sp201703016","title":"反相高效液相色谱-脉冲电化学检测法测定重组人生长激素中异丙基-β-D-硫代半乳糖苷","volume":"35","year":"2017"},{"abstractinfo":"用电化学方法研究了碱性溶液中硫化物在Pt电极上的氧化过程。结果表明,硫离子在-600~+750mV(vs.SCE)存在两个电化学氧化过程。经热力学、动力学和化学分析证实,在约-400mV时硫离子首先氧化为单质硫及多硫化物,沉积在电极表面;约250 mV处,单质硫及多硫化物进一步氧化为硫酸根离子而进入溶液。低电位下的氧化反应是可逆反应,硫离子扩散为控制步骤;高电位下,单质硫进一步氧化为硫酸根离子的反应是不可逆反应。而两反应过程密切相关。","authors":[{"authorName":"刘秀玲","id":"7948f269-d02f-4b99-af38-c48789959d74","originalAuthorName":"刘秀玲"},{"authorName":"王佳","id":"ceae5d6c-f349-4c84-98ad-dfdcc7c1439b","originalAuthorName":"王佳"}],"doi":"10.3969/j.issn.1001-1560.2001.03.001","fpage":"1","id":"44c9958d-1b04-4142-b8f1-4ba13e7d6f78","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7f432994-690d-4e9e-8c26-0d24d07fd235","keyword":"电化学氧化","originalKeyword":"电化学氧化"},{"id":"1ebfdaf8-ff11-44a7-babd-eec8f8a8209e","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"9eca216a-e7ea-413f-b73c-41423daaae38","keyword":"硫","originalKeyword":"硫"},{"id":"f7b770d1-fded-4240-b5fc-b44dabd7a08d","keyword":"硫酸根离子","originalKeyword":"硫酸根离子"}],"language":"zh","publisherId":"clbh200103001","title":"硫化物化学氧化过程研究","volume":"34","year":"2001"},{"abstractinfo":"在实验室对硫非调质钢进行了冶炼和锻压实验,结果表明:随钢凝固速率的增加,钢中硫化物夹杂的尺寸减小而数量增多;随锻压压缩比的增加,硫化物夹杂碎裂而变得细小;在950℃锻压时硫化物的塑性最好,在1 250℃时硫化物的塑性较好,在1 050~1 150℃之间硫化物的塑性较差;随着加热时保温时间的延长,硫化物夹杂的数量减少而尺寸增大.","authors":[{"authorName":"简龙","id":"1a5d9c65-f9a7-4fb3-b00a-cdeee1e258c0","originalAuthorName":"简龙"},{"authorName":"陈伟庆","id":"c3e1ffc1-72a6-4705-917a-1a4229ff2f9c","originalAuthorName":"陈伟庆"},{"authorName":"孟金霞","id":"419f64ab-1e22-4df1-ad5a-6417fb12bf5b","originalAuthorName":"孟金霞"},{"authorName":"惠荣","id":"86924e37-cd66-4259-8001-5d72aaa1fb0f","originalAuthorName":"惠荣"},{"authorName":"李国忠","id":"7cc555d8-3563-4273-9f43-5f9bc7b34f5b","originalAuthorName":"李国忠"}],"doi":"","fpage":"74","id":"22360d67-3723-4806-a3e5-499c3393a513","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"bd353273-009c-4ec9-8039-13b85905305d","keyword":"非调质钢","originalKeyword":"非调质钢"},{"id":"c9370682-dc56-4f09-a13a-41a571fa8882","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"f76381dc-a107-4e1f-af22-8e066e518def","keyword":"压缩比","originalKeyword":"压缩比"},{"id":"f12d9919-93db-47a9-a466-37e144df8017","keyword":"轧制温度","originalKeyword":"轧制温度"}],"language":"zh","publisherId":"gt200610018","title":"硫非调质钢中硫化物形态的控制","volume":"41","year":"2006"},{"abstractinfo":"在实验室对硫非调质钢进行了冶炼和锻压实验,结果表明:随钢凝固速率的增加,钢中硫化物夹杂的尺寸减小而数量增多;随锻压压缩比的增加,硫化物夹杂碎裂而变得细小;在950 ℃锻压时硫化物的塑性最好,在1250 ℃时硫化物的塑性较好,在1050~1150 ℃之间硫化物的塑性较差;随着加热时保温时间的延长,硫化物夹杂的数量减少而尺寸增大。","authors":[{"authorName":"简龙","id":"871ca1f0-0885-489e-a660-0d5ae5cb3ca4","originalAuthorName":"简龙"},{"authorName":"陈伟庆","id":"7290ca3b-d7d6-45b0-85ff-283a19b9afe5","originalAuthorName":"陈伟庆"},{"authorName":"孟金霞","id":"4393667f-1ff1-404b-a98c-b714ed26bf20","originalAuthorName":"孟金霞"},{"authorName":"惠荣","id":"654c6950-fa12-4db0-8e70-c718c728e3f7","originalAuthorName":"惠荣"},{"authorName":"李国忠","id":"48aeb11b-3323-4717-b540-7d99bd23b11e","originalAuthorName":"李国忠"}],"categoryName":"|","doi":"","fpage":"74","id":"6076add3-85ef-4389-b454-4124c34fced3","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"de943d6b-19ff-4fdd-b43d-9c1160112d71","keyword":"非调质钢;硫化物;压缩比;轧制温度","originalKeyword":"非调质钢;硫化物;压缩比;轧制温度"}],"language":"zh","publisherId":"0449-749X_2006_10_2","title":"硫非调质钢中硫化物形态的控制","volume":"41","year":"2006"},{"abstractinfo":"根据硫化物的难选金矿石或金精矿细菌氧化的主要反应和副反应,按照化学热力学的基本原理,设计了硫化物的难选金矿石或金精矿细菌氧化反应热效应--(ΔH 318) 总的计算方法.","authors":[{"authorName":"郭继光","id":"69cf293c-0c8e-4e1a-ac20-29198a174de6","originalAuthorName":"郭继光"},{"authorName":"权新军","id":"af2e4d61-94cb-47b4-9f16-914f3520f1d9","originalAuthorName":"权新军"},{"authorName":"满文慧","id":"62025407-245f-47d9-9eea-90817e6e2f1f","originalAuthorName":"满文慧"}],"doi":"10.3969/j.issn.1001-1277.2005.10.011","fpage":"35","id":"e7051e94-b28d-4924-9bbd-d272008eb63c","issue":"10","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"aa95fb7c-9ffc-4fbf-9d01-d47301e12c23","keyword":"难选金矿石","originalKeyword":"难选金矿石"},{"id":"befc2f4f-13d7-4067-82e2-a662fecbbb24","keyword":"金精矿","originalKeyword":"金精矿"},{"id":"13186c7b-b5de-4206-8183-5928e5808b12","keyword":"细菌氧化","originalKeyword":"细菌氧化"},{"id":"c2b3efda-ca97-4bef-8658-e85f86aab485","keyword":"热效应","originalKeyword":"热效应"},{"id":"9aad1e2a-2fb3-422a-aa34-e5b20dfbb205","keyword":"计算","originalKeyword":"计算"}],"language":"zh","publisherId":"huangj200510011","title":"硫化物的难选金矿石或金精矿细菌氧化反应热效应的计算","volume":"26","year":"2005"},{"abstractinfo":"通过实验室小炉试验研究钙处理对中硫非调质钢中硫化物形态的影响.结果表明,钙处理后铸坯中硫化物由纯硫化锰转化为含钙铝的复合硫化物,长宽比在1~2区间内的硫化物比例明显提高;在轧制后,经过钙处理的试样中硫化物的长宽比也更多地集中在1~3区间内,这说明钙处理有效改善了钢中硫化物的形态特征,使得更多的硫化物呈纺锤状,提高了钢材性能.","authors":[{"authorName":"姚登元","id":"bd3c424a-d06e-419a-b2c3-2f9506c65695","originalAuthorName":"姚登元"},{"authorName":"吴华杰","id":"e233de6e-faf6-4b14-a618-70cc629629f9","originalAuthorName":"吴华杰"},{"authorName":"陆鹏雁","id":"f1a87793-b2b1-4428-a6f0-fa2ee945f8dd","originalAuthorName":"陆鹏雁"},{"authorName":"岳峰","id":"f0fc0589-941b-4570-b222-c5ac189f0ef4","originalAuthorName":"岳峰"},{"authorName":"张永超","id":"dc0dcb5a-0b90-437c-ac94-db285a62410f","originalAuthorName":"张永超"}],"doi":"10.13228/j.boyuan.issn1006-9356.20160217","fpage":"11","id":"44868e8a-a13b-4a1e-8c83-89bfeea7ad81","issue":"4","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"fed5689a-e342-4d98-804f-6bd5e0924707","keyword":"硫非调质钢","originalKeyword":"含硫非调质钢"},{"id":"e16f6224-0cd3-48e8-b138-2c089a3f027e","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"1e4eaede-1d7c-4af1-a982-5de71c2085cd","keyword":"钙处理","originalKeyword":"钙处理"},{"id":"654d06fa-6f7f-4669-8a36-16edc2e3fc3a","keyword":"长度分布","originalKeyword":"长度分布"},{"id":"1b359ab1-8cf9-4bb6-abe7-07be535cec14","keyword":"长宽比分布","originalKeyword":"长宽比分布"}],"language":"zh","publisherId":"zgyj201704003","title":"钙处理对硫非调质钢中硫化物形态的影响","volume":"27","year":"2017"},{"abstractinfo":"金凤金矿矿石的工艺类型为贫硫化物砷碳微细粒浸染型金矿石.通过对该矿石进行系统的浮选试验研究,确定浮选的最佳工艺条件,为企业取得良好的选矿技术指标提供了有力的技术支持,也为该地区同类型矿石资源的开发利用提供了技术资料.","authors":[{"authorName":"薛忱","id":"d4e36f9d-7ffb-431c-abed-c023f74714a4","originalAuthorName":"薛忱"},{"authorName":"梁泽来","id":"232a1ab0-bbaf-42be-af8b-10c0861a92b0","originalAuthorName":"梁泽来"}],"doi":"10.3969/j.issn.1001-1277.2011.12.011","fpage":"42","id":"9026d929-03ce-44b5-b7fc-2417fa72d81c","issue":"12","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"6501c951-ef53-44c8-8527-ff3988a240ee","keyword":"浸染型金矿石","originalKeyword":"浸染型金矿石"},{"id":"31d2dbb8-cf69-4f2d-9b9e-4ab2a10e6139","keyword":"浮选","originalKeyword":"浮选"},{"id":"4bf15b7b-aa2b-4c53-b239-686c3f8749ad","keyword":"精矿品位","originalKeyword":"精矿品位"},{"id":"62a43647-db35-4bd0-8953-84be8187d2e7","keyword":"回收率","originalKeyword":"回收率"}],"language":"zh","publisherId":"huangj201112011","title":"贫硫化物砷碳微细浸染型金矿石浮选试验研究","volume":"32","year":"2011"},{"abstractinfo":"采用气相色谱法,分别利用火焰光度检测器(FPD)和原子发射检测器(AED)对中国石化北京燕山石油化工公司(简称燕化)炼油厂和石家庄炼油厂生产的重油催化裂化(RFCC)汽油中的硫化物进行了分析.燕化炼油厂RFCC汽油中总硫只有29.5 mg/L,采用FPD无法检测;石家庄炼油厂的RFCC汽油中总硫为720.1 mg/L.用标样和气相色谱-质谱法(GC-MS)定性,FPD分离检测出19种硫化物,主要是硫醇、噻吩类硫化物,硫醚类硫化物和二硫化物均未检出.用AED鉴定出燕化炼油厂RFCC汽油中的硫化物12种,主要是噻吩和四氢噻吩类、低碳硫醇和二硫化物;石家庄炼油厂的RFCC汽油中的硫化物26种,也主要以噻吩类为主,另有少量的低碳硫醇、硫醚和二硫化物.结果表明,用AED检测RFCC汽油中的硫化物,其灵敏度和选择性都高于目前使用最普遍的FPD.","authors":[{"authorName":"梁咏梅","id":"12507858-cc45-405c-9737-85a797f790dc","originalAuthorName":"梁咏梅"},{"authorName":"刘文惠","id":"d5902941-8a40-436e-83fb-1a4eedab7a80","originalAuthorName":"刘文惠"},{"authorName":"刘耀芳","id":"9e4c4380-eae9-4247-acbb-fd8140c1212b","originalAuthorName":"刘耀芳"}],"doi":"10.3321/j.issn:1000-8713.2002.03.026","fpage":"283","id":"c3b47a33-758f-4826-909f-548b2f7e47a0","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"d89833e9-d078-4ed5-aee3-de8caab45561","keyword":"重油催化裂化","originalKeyword":"重油催化裂化"},{"id":"b8d31df0-5edd-4cc3-9cf2-8d1fe669a919","keyword":"汽油","originalKeyword":"汽油"},{"id":"48d56bbe-f9a5-4de6-a62f-2394f4db6a69","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"269e9bfc-a87f-4623-a371-2c85b380f1d5","keyword":"火焰光度检测","originalKeyword":"火焰光度检测"},{"id":"6d6b7ec2-09cd-4e15-8551-74f601957b54","keyword":"原子发射检测","originalKeyword":"原子发射检测"}],"language":"zh","publisherId":"sp200203026","title":"重油催化裂化汽油中硫化合物的分析","volume":"20","year":"2002"},{"abstractinfo":"针对目前无氰镀银层外观差、附着力不良、镀液稳定性差等问题,采用横向划痕法、直角阴极法、赫尔楷8点法、阴极极化曲线及称重法对无氰电镀银的基础液和添加剂SGD-DY1(芳香醛、硫化合物和表面活性剂)的镀液进行了测试;用扫描电镜和XRD对镀层表面形貌和晶体结构进行了表征,用盐雾试验、耐3.0mg/L H2S和0.1mol/L K2SO4试验测试了镀层耐蚀性能和抗硫化变色性能.结果表明:由于SGD-DY1的加入,横向划痕完全消失,整平能力提高;深镀能力由原来的96%提高到100%,均镀能力由60%提高到80%;阴极极化曲线明显负移,阴极极化能力提高,阴极电流效率由96%下降到92%,镀层的沉积速度由12um/h下降到10um/h;镀层由(111)和(110)晶面择优取向向(111)晶面转变且镀层平整、晶粒细致;镀层的耐蚀性和杭变色性明显提高.","authors":[{"authorName":"单颖会","id":"69dd52a7-b364-4c7b-8f38-7e21d8eb31d0","originalAuthorName":"单颖会"},{"authorName":"于锦","id":"e5246b8e-968f-40e2-a8bd-e084cd755ea1","originalAuthorName":"于锦"},{"authorName":"谭宏宇","id":"94ecea64-0b7e-49b2-9d03-2c3bef691132","originalAuthorName":"谭宏宇"},{"authorName":"王丽丽","id":"1dd0cc95-a9b0-455a-911f-3db14cc99a0c","originalAuthorName":"王丽丽"}],"doi":"","fpage":"36","id":"709270ad-2dee-498a-872b-d68f3f44f461","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"5fa76db5-fef5-4feb-8643-f263b6c29d6f","keyword":"无氰电镀银","originalKeyword":"无氰电镀银"},{"id":"37246208-1beb-49c9-82fe-76608a3f60e4","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"2358bdbf-a991-4a98-be63-bbb23f38f370","keyword":"抗变色性","originalKeyword":"抗变色性"},{"id":"db40e7b0-8364-4c5a-ae28-8934d6179309","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201103011","title":"芳香醛和硫化合物的添加剂对无氰电镀银的影响","volume":"44","year":"2011"},{"abstractinfo":"介绍了无机类富勒烯(Inorganic fullerene-like,简称IF)与过渡金属硫化物(WS2和MoS2)纳米材料的常用合成技术--固-气与气相反应合成方法; 以及用化学复合镀法制备含有IF-WS2纳米颗粒的Ni-P复合镀层的方法.","authors":[{"authorName":"马晓春","id":"1f97d76c-366b-43d7-a36a-33d907998a5b","originalAuthorName":"马晓春"}],"doi":"10.3969/j.issn.1001-3660.2005.06.004","fpage":"11","id":"1b2918f8-64ac-4f60-9618-76c6c91d400c","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"dccddc9d-435d-426f-8223-6a0521678663","keyword":"无机类富勒烯","originalKeyword":"无机类富勒烯"},{"id":"fbaeb079-8ddd-4d90-b8e3-371622c76c33","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"f8989387-d152-4794-bf08-cff5634ed347","keyword":"过渡金属硫化物","originalKeyword":"过渡金属硫化物"},{"id":"8b82aa1f-f91b-4051-9341-172f9802adc0","keyword":"纳米复合化学镀","originalKeyword":"纳米复合化学镀"}],"language":"zh","publisherId":"bmjs200506004","title":"过渡金属硫化物纳米材料化学复合镀层制备方法","volume":"34","year":"2005"}],"totalpage":7019,"totalrecord":70181}