{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对30MnSi 预应力混凝土用(简称PC)在实际生产中抗延迟断裂性能差、力学性能不稳、屈强比高等问题,从生产PC的技术关键热处理制度入手, 通过调质处理得到回火屈(索)氏体组织,分别绘出了淬火温度、回火温度与抗拉强度、伸长率、屈强比的关系曲线。系统地研究了热处理工艺参数对的组织及强韧性的影响规律并进行了理论分析。摸索出了生产30MnSi PC的合理工艺制度:当加热时间一定时,淬火温度920~960 ℃,回火温度控制在390~430 ℃时,能获得较好的综合力学性能。","authors":[{"authorName":"肖桂枝","id":"77284c07-0fd9-4a7d-b87a-1735f2faeaea","originalAuthorName":"肖桂枝"},{"authorName":"邸洪双","id":"bd972e58-cc7c-453e-b2fe-3d609d5fe0f6","originalAuthorName":"邸洪双"},{"authorName":"贾学军","id":"e4069d69-0f28-40ed-bf93-63e1417b139b","originalAuthorName":"贾学军"}],"categoryName":"|","doi":"","fpage":"73","id":"7cea0a6d-a5cc-463b-9db1-a297e0c979a8","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5a93ec92-54be-4603-b05a-e194c8c32c09","keyword":"PC;30MnSi;热处理工艺;力学性能","originalKeyword":"PC钢棒;30MnSi;热处理工艺;力学性能"}],"language":"zh","publisherId":"0449-749X_2007_4_19","title":"热处理工艺30MnSi PC力学性能的影响","volume":"42","year":"2007"},{"abstractinfo":"针对30MnSi 预应力混凝土用(简称PC)在实际生产中抗延迟断裂性能差、力学性能不稳、屈强比高等问题,从生产PC的技术关键热处理制度入手, 通过调质处理得到回火屈(索)氏体组织,分别绘出了淬火温度、回火温度与抗拉强度、伸长率、屈强比的关系曲线.系统地研究了热处理工艺参数对的组织及强韧性的影响规律并进行了理论分析.摸索出了生产30MnSi PC的合理工艺制度:当加热时间一定时,淬火温度920~960 ℃,回火温度控制在390~430 ℃时,能获得较好的综合力学性能.","authors":[{"authorName":"肖桂枝","id":"b0f23d84-f91b-4a16-af67-3b396bf1ec79","originalAuthorName":"肖桂枝"},{"authorName":"邸洪双","id":"c8f52a6b-9756-42c2-91c8-cdc0d4843005","originalAuthorName":"邸洪双"},{"authorName":"贾学军","id":"57f2bf0f-0d1b-4a8c-9a3c-ded549fbedf0","originalAuthorName":"贾学军"}],"doi":"","fpage":"73","id":"a3258d5c-40a2-49b1-87a9-c1c1f43b113e","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6ffe293a-5f5b-445e-90ec-cea0532b2db5","keyword":"PC","originalKeyword":"PC钢棒"},{"id":"8feaa58d-5f65-4865-8374-46b87c4a6f20","keyword":"30MnSi","originalKeyword":"30MnSi"},{"id":"dbc54f72-3ab3-41f2-9364-b2c119e36a7c","keyword":"热处理工艺","originalKeyword":"热处理工艺"},{"id":"6bf623a1-ac41-4630-a29e-b56f9c88572a","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200704019","title":"热处理工艺30MnSi PC力学性能的影响","volume":"42","year":"2007"},{"abstractinfo":"对30MnSi PC进行了淬火回火处理,分析探讨了热处理工艺对高强度耐延迟断裂性能的影响。采用FIP试验作为PC耐延迟断裂性能的评价方法。研究发现,相同的回火工艺30MnSi的耐延迟断裂性能随淬火温度的升高呈先升高后降低的趋势,950 ℃左右淬火其耐延迟断裂性能较好;在保证强度满足要求的前提下提高回火温度可以提高的耐延迟断裂性能。组织观察发现,经430 ℃左右回火后,30MnSi得到的回火索(屈)氏体组织均匀细小,碳化物弥散分布在马氏体板条界上,耐延迟断裂性能较好。可见,通过改变热处理制度改变组织形态,是改善30MnSi的耐延迟断裂性能的一种有效途径。","authors":[{"authorName":"肖桂枝","id":"c4c71ad9-7850-45b7-9774-d4c82b9d1e23","originalAuthorName":"肖桂枝"},{"authorName":"邸洪双","id":"8e8a19d9-45e1-4700-b4d5-65177201b87d","originalAuthorName":"邸洪双"}],"categoryName":"|","doi":"","fpage":"68","id":"1467f592-bd56-4dad-935e-667fd22fcc1c","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"cd644a9e-6638-4e37-9396-9ec54f014d9a","keyword":"PC;延迟断裂;30MnSi;热处理","originalKeyword":"PC钢棒;延迟断裂;30MnSi;热处理"}],"language":"zh","publisherId":"0449-749X_2008_1_4","title":"热处理工艺30MnSi PC耐延迟断裂性能的影响","volume":"43","year":"2008"},{"abstractinfo":"对30MnSi PC进行了淬火回火处理,分析探讨了热处理工艺对高强度耐延迟断裂性能的影响.采用FIP试验作为PC耐延迟断裂性能的评价方法.研究发现,相同的回火工艺30MnSi的耐延迟断裂性能随淬火温度的升高呈先升高后降低的趋势,950 ℃左右淬火其耐延迟断裂性能较好;在保证强度满足要求的前提下提高回火温度可以提高的耐延迟断裂性能.组织观察发现,经430 ℃左右回火后,30MnSi得到的回火索(屈)氏体组织均匀细小,碳化物弥散分布在马氏体板条界上,耐延迟断裂性能较好.可见,通过改变热处理制度改变组织形态,是改善30MnSi的耐延迟断裂性能的一种有效途径.","authors":[{"authorName":"肖桂枝","id":"69faebf0-26e2-444d-95ee-9c5f1a865aa7","originalAuthorName":"肖桂枝"},{"authorName":"邸洪双","id":"e56176df-1b1d-4605-8b7e-fc152eee5d2d","originalAuthorName":"邸洪双"}],"doi":"","fpage":"68","id":"a3f35fc9-ff6b-4c98-87de-caa562874b0c","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1828caf9-dd37-4683-ae20-3dbb3697baf6","keyword":"PC","originalKeyword":"PC钢棒"},{"id":"9c549ca9-b1fa-4bf8-bcf5-5c4f3689fe59","keyword":"延迟断裂","originalKeyword":"延迟断裂"},{"id":"4e461943-33bb-4b2b-8178-a2a2bd9f3fc1","keyword":"30MnSi","originalKeyword":"30MnSi"},{"id":"39560eac-4a0d-407a-a634-aafcd63d9157","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"gt200801017","title":"热处理工艺30MnSi PC耐延迟断裂性能的影响","volume":"43","year":"2008"},{"abstractinfo":"研究了热处理工艺对真空感应炉加电渣炉熔炼的30CrMoA力学性能,并探讨了提高的强韧性的途径.","authors":[{"authorName":"张淑平","id":"2975f3c5-e68d-474b-abee-323b22761dc6","originalAuthorName":"张淑平"},{"authorName":"邵玉","id":"0deb94be-dc2a-490a-9b62-190b298f5e7f","originalAuthorName":"邵玉"},{"authorName":"张景海","id":"258a76ee-9cea-457a-9961-4943ccd23f3b","originalAuthorName":"张景海"},{"authorName":"范增义","id":"667879e7-ba37-420c-aaee-568646f52b33","originalAuthorName":"范增义"},{"authorName":"于洪峰","id":"daa5c272-03c1-4f0e-b82f-1c11787124f0","originalAuthorName":"于洪峰"}],"doi":"","fpage":"44","id":"d6f86090-4578-4dd7-91e9-991c70c63a3a","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"e22cdf90-28df-4117-84d6-39dc6a373d81","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ba7def62-3d11-4250-a4c7-0b154faa5ac3","keyword":"冲击韧性","originalKeyword":"冲击韧性"},{"id":"ed990213-3c95-434f-9996-59012b38d0c4","keyword":"双重正火","originalKeyword":"双重正火"}],"language":"zh","publisherId":"gt199812012","title":"双重正火热处理工艺30CrMoA力学性能的影响","volume":"33","year":"1998"},{"abstractinfo":"结合酒钢铁水成分特点,通过对转炉冶炼、LF炉精炼、连铸机拉坯以及控轧控冷等过程的分析和控制,成功开发出预应力混凝土用桩钢筋30MnSi热轧光圆盘条.检验结果表明:该盘条表面质量好、夹杂物尺寸小、气体含量低、晶粒小、力学性能优,已成功应用在预应力混凝土离心管桩、电杆、高架桥墩等预应力构件中.","authors":[{"authorName":"杨新龙","id":"91244975-d5ad-4d0a-8484-6235d922ab17","originalAuthorName":"杨新龙"},{"authorName":"金武俊","id":"92845335-569a-4eb9-a0bd-292fec9871d5","originalAuthorName":"金武俊"},{"authorName":"刘峰","id":"604434b5-f00d-4f46-80fe-6434155b683a","originalAuthorName":"刘峰"}],"doi":"","fpage":"30","id":"f6f0a3d0-1463-4d21-b8b6-01e0afb7ed33","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"7d6dabf4-c514-408c-80a4-c6c0fe025f38","keyword":"PC桩","originalKeyword":"PC钢桩"},{"id":"041d7ee5-eeb0-4de1-a3f6-d32dd73f88f1","keyword":"30MnSi","originalKeyword":"30MnSi"},{"id":"2c0d4708-8a7d-4ca4-8c3a-562972239882","keyword":"炼钢","originalKeyword":"炼钢"},{"id":"54f09741-694e-44b4-be7c-0af2f6e915f9","keyword":"轧制","originalKeyword":"轧制"}],"language":"zh","publisherId":"gtyj201406008","title":"PC桩钢筋30MnSi热轧光圆盘条的开发","volume":"42","year":"2014"},{"abstractinfo":"对PC淬火、回火的热处理工艺、强韧性及其组织和性能的关系进行了系统研究,发现屈强比主要受到淬火温度的影响,当回火温度控制在440~460℃时,能使强度和塑性达到最佳值.尽管在960~1000℃的温度区间淬火屈强比较低,但可以获得较细的显微组织.","authors":[{"authorName":"俞肇元","id":"39330805-0d9f-4028-9fe5-fd2cb7d00d25","originalAuthorName":"俞肇元"},{"authorName":"李艳梅","id":"778678ea-b42f-4c54-bfa3-786610c66be6","originalAuthorName":"李艳梅"},{"authorName":"朱伏先","id":"a07099cf-96a9-4daf-af5c-4bd5d7886972","originalAuthorName":"朱伏先"}],"doi":"10.3969/j.issn.1671-6620.2002.03.013","fpage":"212","id":"279cd9b2-8755-4a33-b759-93b7e459ac8a","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"7bbd7ed3-81b8-4447-a666-da1b4fc3ffdc","keyword":"PC","originalKeyword":"PC钢棒"},{"id":"092acbf5-243a-4e5f-bd81-d66226987ff7","keyword":"热处理工艺","originalKeyword":"热处理工艺"},{"id":"a4bb4c9b-a589-425a-9ad7-c84d9e7c7e65","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clyyjxb200203013","title":"热处理工艺对建筑用PC强韧性的影响","volume":"1","year":"2002"},{"abstractinfo":"研究了一种新型低合金超高强度30CrNiWVA经不同温度淬火、回火后的力学性能和微观组织的变化规律.结果发现,淬火温度在900℃~940℃、回火温度在340℃左右时,30CrNiWVA回火马氏体组织均匀细小,σb≥1 700 MPa、σ0.2≥1 500 MPa、δ5≥12%、ψ≥55%、Aku≥50 J,可以满足某些航空结构件在350℃回火后高强度和高韧性的要求.","authors":[{"authorName":"王毛球","id":"c717ecf2-0142-4e89-9c40-c89257d0fde8","originalAuthorName":"王毛球"},{"authorName":"董瀚","id":"7baefd4b-f09e-4dc5-aeb1-064fb8121cf0","originalAuthorName":"董瀚"},{"authorName":"李建新","id":"2afe9156-034a-450e-a5df-d3539213cf9c","originalAuthorName":"李建新"}],"doi":"10.3969/j.issn.1007-2330.2002.04.009","fpage":"41","id":"46a2cb8c-1837-4528-8f4d-36336c9410ac","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"597f128f-b293-44f5-8f56-52e8afa0b13f","keyword":"超高强度","originalKeyword":"超高强度钢"},{"id":"b1970fac-36fa-43a8-b167-129075ebd350","keyword":"热处理","originalKeyword":"热处理"},{"id":"cd356ac4-9a62-4fc1-97e8-5d43faaf0ca7","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy200204009","title":"热处理工艺30CrNiWVA的组织和力学性能的影响","volume":"32","year":"2002"},{"abstractinfo":"低碳硅锰钢经临界区等温淬火,残留有大量的奥氏体.该在Ma~Md温度之间形变,因中大量稳定的残余奥氏体的应变诱导马氏体相变和相变诱发塑性(TRIP),可获得高的强度、塑性以及良好的强度与塑性的配合.通过对其力学性能测试与显微组织分析,对低碳硅锰钢热处理工艺中残余奥氏体的相变诱发塑性行为进行了探讨.结果表明:在400℃等温淬火的热处理工艺,所获得的力学性能最佳.","authors":[{"authorName":"李壮","id":"9284ba49-7339-4ed4-b462-0d6393c77374","originalAuthorName":"李壮"},{"authorName":"吴迪","id":"5d8775e5-2e89-437a-9f7a-666a4d2e8495","originalAuthorName":"吴迪"}],"doi":"10.3969/j.issn.1009-6264.2004.04.007","fpage":"23","id":"fd355e13-7c56-4d3a-bf4d-5c2457c55728","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"3d0c43eb-70cb-4cd5-8af9-6d3939ad0deb","keyword":"临界区等温淬火","originalKeyword":"临界区等温淬火"},{"id":"a8dbbf29-d8fe-43be-b91f-4b67d3feaede","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"64fe500d-cbe4-4db0-8eea-b799ab8455a1","keyword":"应变诱导相变","originalKeyword":"应变诱导相变"},{"id":"245bd2f2-f48e-4b95-8990-a080c0eb9fff","keyword":"相变诱发塑性(TRIP)","originalKeyword":"相变诱发塑性(TRIP)"}],"language":"zh","publisherId":"jsrclxb200404007","title":"热处理工艺对低碳硅锰TRIP力学性能的影响","volume":"25","year":"2004"},{"abstractinfo":"近年来,以某公司生产的30MnSi盘圆为母材的PC在存放、运输或使用过程中延迟断裂现象比较突出。为了寻找PC延迟断裂的原因,以延迟断裂30MnSi母材为研究对象,借助金相光学显微镜、酸洗低倍、显微硬度计、扫描电子显微镜等分析手段,对PC延迟断裂现象进行深入细致的研究。通过大量的试验数据分析发现,引起PC延迟断裂的原因主要有内部夹杂、表面缺陷及热处理工艺等几个方面,并通过延迟断裂的形成原因,有针对性的作出了相应的预防措施,有效的解决了PC延迟断裂问题。","authors":[{"authorName":"何力国","id":"459e59b7-77f3-4aec-9fdc-39aa6f604bf6","originalAuthorName":"何力国"},{"authorName":"王刚","id":"befc1d09-bc10-44e4-a488-3d9fe900d8c0","originalAuthorName":"王刚"},{"authorName":"薛俊峰","id":"ef1a81a5-8c83-43dc-955c-ab9ac290fdea","originalAuthorName":"薛俊峰"},{"authorName":"李明贤","id":"6f08212d-4408-438d-9424-74e29725c9d8","originalAuthorName":"李明贤"}],"doi":"","fpage":"46","id":"6d1d3941-b6e1-45de-9c13-ea2ff7e7725a","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"df8a9f49-8269-4403-9ea1-b4f72132a4fc","keyword":"30MnSi","originalKeyword":"30MnSi"},{"id":"d51748ad-6432-4be9-9fd7-fa73e84f9d23","keyword":"表面裂纹","originalKeyword":"表面裂纹"},{"id":"eb8ee1b7-7f2f-4169-88fb-cadfa11fdcb1","keyword":"表面擦伤","originalKeyword":"表面擦伤"},{"id":"7edc7ba3-6d03-44ec-b55b-131e240e2a96","keyword":"内部夹杂","originalKeyword":"内部夹杂"},{"id":"284519a2-a6a4-4da3-9b20-5458b10426a3","keyword":"热处理工艺","originalKeyword":"热处理工艺"}],"language":"zh","publisherId":"wlcs201106013","title":"PC延迟断裂的原因分析","volume":"","year":"2011"}],"totalpage":14055,"totalrecord":140548}