{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用喷射沉积工艺制备SiCp/Al-Fe-V-Si复合材料,并通过热压和热轧工艺对沉积坯进行致密化;通过高分辨电镜观察其SiC/Al界面形貌,并对比热暴露后的界面形貌.结果表明:复合材料主要存在两种SiC/Al界面,一种是厚度为3 nm左右的晶态Si界面层,且在界面附近的基体中生成细小的Al4C3相;另一种是厚度为5 nm的非晶态SiO2界面层,部分溶解的SiC颗粒向附近Al基体中注入游离态的Si,在界面附近形成Si的浓度梯度;两种界面都具有良好的润湿性,界面结合强度高;经640 ℃热暴露10 h后,SiC/Al界面处生成的粗大Al4C3脆性相降低界面结合强度,从而降低复合材料的力学性能.","authors":[{"authorName":"贺毅强","id":"a5d9a956-e871-4fb7-abeb-6d0b7b8c5367","originalAuthorName":"贺毅强"},{"authorName":"王娜","id":"23e3a99c-ed9e-4c03-81b3-d747454eae45","originalAuthorName":"王娜"},{"authorName":"乔斌","id":"9cea2f83-128b-45e6-8a94-81e09b10579d","originalAuthorName":"乔斌"},{"authorName":"冯立超","id":"82e317b6-d809-4816-92d5-397b7d6f0319","originalAuthorName":"冯立超"},{"authorName":"陈志钢","id":"ab7f0d4c-2004-4d24-9aa1-1ba918111244","originalAuthorName":"陈志钢"},{"authorName":"陈振华","id":"3e9fd19c-171b-4861-948b-8e0825985899","originalAuthorName":"陈振华"}],"doi":"","fpage":"1302","id":"02f9c10a-2eac-437a-8be0-e90aa74f1681","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"d8836774-aa22-43c1-999d-72e3346a0571","keyword":"耐热铝合金","originalKeyword":"耐热铝合金"},{"id":"241bd0d2-d099-4b4f-8715-d409a9091bb5","keyword":"Al-Fe-V-Si复合材料","originalKeyword":"Al-Fe-V-Si复合材料"},{"id":"9dd87943-5f6e-4d83-bb6d-1996ed2754e2","keyword":"SiC颗粒","originalKeyword":"SiC颗粒"},{"id":"cd42ae26-11c2-4224-99af-2ea07395cd4b","keyword":"喷射沉积","originalKeyword":"喷射沉积"},{"id":"4cd8a3a0-c818-4a69-bd86-179170a189fd","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"zgysjsxb201007009","title":"SiC颗粒增强Al-Fe-V-Si复合材料的SiC/Al界面形貌","volume":"20","year":"2010"},{"abstractinfo":"采用粉末冶金工艺制备了Al-Fe-V-Si合金及Al-Fe-V-Si/SiCp复合材料, 对该合金及复合材料的微观组织进行了研究, 测试了合金棒材与其SiC颗粒增强复合材料的常温和高温力学性能. 结果表明: 制备得到Al-Fe-V-Si合金的主要析出相和强化相是弥散分布的球状α-Al13相;加入SiC颗粒后, 大幅度提高了材料的抗拉强度.","authors":[{"authorName":"邹利华","id":"9071e1e9-3a28-4ccc-a8b2-07bfc5efd15e","originalAuthorName":"邹利华"},{"authorName":"肖伯律","id":"edce2b5c-afed-4fd4-a5c5-d7d7d626dddc","originalAuthorName":"肖伯律"},{"authorName":"樊建中","id":"f4b8055d-be53-44ca-a847-1134c8fb82b1","originalAuthorName":"樊建中"},{"authorName":"左涛","id":"eba7bfd9-0021-4f38-a590-42639f59947f","originalAuthorName":"左涛"},{"authorName":"韩静涛","id":"ff0eb2a0-8ea4-4120-b900-6ac3ecb1297f","originalAuthorName":"韩静涛"}],"doi":"10.3969/j.issn.0258-7076.2006.05.004","fpage":"591","id":"4c22ef46-2b93-4d99-bebd-862d35139053","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"038b3ffd-9fc8-4020-8e06-d3d4308030ba","keyword":"Al-Fe-V-Si合金","originalKeyword":"Al-Fe-V-Si合金"},{"id":"3b820605-f6b9-48be-81dc-71fb06532c88","keyword":"析出相","originalKeyword":"析出相"},{"id":"a382f216-997c-433b-ae1a-b087d85f0baf","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"xyjs200605004","title":"Al-Fe-V-Si合金以及Al-Fe-V-Si/SiCp复合材料的微观组织及力学性能的研究","volume":"30","year":"2006"},{"abstractinfo":"为研究SiCP/Al-Fe-V-Si复合材料的热稳定性,对多层喷射沉积技术制备的SiC颗粒增强Al-Fe-V-Si合金经过不同温度下的热稳定性实验后进行了硬度检测,并对其显微组织进行了电镜观察.结果表明:随着基体合金材料Fe含量的提高,复合材料的组织和力学性能具有更好的高温稳定性.添加SiC颗粒后,SiC颗粒向基体中注入Si,由于基体中Si浓度的提高,减慢了合金中第二相弥散粒子的粗化和分解,与未添加SiC颗粒的合金材料相比,添加SiC颗粒复合材料的组织和力学性能具有更好的高温稳定性.","authors":[{"authorName":"贺毅强","id":"7590f600-b0ba-4947-91a0-5005150aa7c9","originalAuthorName":"贺毅强"},{"authorName":"陈振华","id":"724de772-73d5-4b30-9016-143f3bfb8e94","originalAuthorName":"陈振华"},{"authorName":"王娜","id":"7bafe048-f74a-44d1-b13e-179d9f43dbff","originalAuthorName":"王娜"},{"authorName":"郝亮","id":"cdd4161e-217b-4ba7-a7a3-273eddcbfd0f","originalAuthorName":"郝亮"},{"authorName":"陈志钢","id":"e4304d49-6316-42a1-b799-c57f85bec0f9","originalAuthorName":"陈志钢"},{"authorName":"陈刚","id":"9db3fd55-6eb2-4e24-90d1-9e6d47b794cb","originalAuthorName":"陈刚"}],"doi":"","fpage":"433","id":"a60ac2b7-3bcf-4493-a8af-a169e4e55b55","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"eda59d01-90de-4c8c-8f46-cb6949836c07","keyword":"多层喷射沉积","originalKeyword":"多层喷射沉积"},{"id":"36295e4a-7b5a-431a-97e3-eb746b3b87d6","keyword":"SiC","originalKeyword":"SiC"},{"id":"78b9c686-2fa5-4084-8f1a-b334880f59cd","keyword":"Al-Fe-V-Si合金","originalKeyword":"Al-Fe-V-Si合金"},{"id":"d601bd9c-9cc0-490a-9a5f-8b2dc0e0ed23","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"zgysjsxb200803010","title":"SiCp/Al-Fe-V-Si复合材料组织与性能的热稳定性","volume":"18","year":"2008"},{"abstractinfo":"应用新型化学涂层工艺(置换法),成功地制备出结合紧密、光滑的Ni涂SiC粉末;分析对比了2种不同涂层工艺原理及涂层效果;分析了不同SiC增强Al-Fe-V-Si(0812)复合材料物理和力学性能,结果表明:由于涂覆SiC与基体的结合更加牢固,较软的基体合金与过渡层Ni的结合而降低了增强体与基体合金之间的孔隙率,从而使10%SiC(Ni)/Al-Fe-V-Si(0812)(质量分数,下同)复合材料在室温的断裂强度分别比基体和10%SiCp/Al-Fe-V-Si(0812)复合材料增加了62.15%和2.82%,在400℃时分别增加了55.3%,28.6%.","authors":[{"authorName":"李云平","id":"0253ee89-37e1-47e6-9a2b-78953671929d","originalAuthorName":"李云平"},{"authorName":"李溪滨","id":"a2ab172a-34c7-474a-a1a6-ff1ae1831f66","originalAuthorName":"李溪滨"}],"doi":"","fpage":"183","id":"4bd0818d-f654-43b5-94eb-850c5e5221af","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"29f12b9d-58a8-4145-b61f-0ec4b27965ea","keyword":"化学涂层","originalKeyword":"化学涂层"},{"id":"a8ff27f0-f010-4912-b35a-1694df1747e2","keyword":"置换法","originalKeyword":"置换法"},{"id":"7d23c018-b860-4b44-a656-17cdcbb4776f","keyword":"热挤压","originalKeyword":"热挤压"},{"id":"34ebd135-6529-47a9-85fc-e7407a9b5461","keyword":"耐热铝基复合材料","originalKeyword":"耐热铝基复合材料"}],"language":"zh","publisherId":"xyjsclygc200203006","title":"涂覆颗粒增强耐热铝基复合材料SiC(Ni)/Al-Fe-V-Si力学性能研究","volume":"31","year":"2002"},{"abstractinfo":"采用喷射沉积工艺制备SiCP/Al-11.7Fe-1.15V-2.4Si复合材料,并通过热压工艺对复合材料进行致密化,再通过热轧加工成板材.对复合材料的显微组织以及不同温度下复合材料的断裂性能和断口形貌进行研究.结果表明:采用热压致密后再热轧工艺能使SiC颗粒分布均匀,长轴方向平行于轧制方向,有利于增强复合材料的力学性能,复合材料的断裂性能和断面形貌与拉伸温度以及SiC的分布和取向相关,随着拉伸温度升高,SiC/Al界面强度减弱,拔断的SiC颗粒逐渐减少,SiC颗粒的拔出成为主要的裂纹源;与基体金属不同的是,复合材料的塑性随着温度升高而降低.","authors":[{"authorName":"贺毅强","id":"af80c12e-b1e7-4a6d-9edd-dc287fd795d5","originalAuthorName":"贺毅强"},{"authorName":"乔斌","id":"f480bbf5-47b3-4037-9f66-fd322de3eefd","originalAuthorName":"乔斌"},{"authorName":"王娜","id":"a7960f5c-61c1-4289-9e6a-a652448c2435","originalAuthorName":"王娜"},{"authorName":"杨建明","id":"2098931b-d352-4504-a748-310353b9b03b","originalAuthorName":"杨建明"},{"authorName":"徐政坤","id":"a1fe5cf2-d3e2-41b2-8f50-27741b561db2","originalAuthorName":"徐政坤"},{"authorName":"尚峰","id":"c4d25788-8294-4a2c-a564-5f09b44602ae","originalAuthorName":"尚峰"},{"authorName":"陈振华","id":"32beb79e-6065-4783-a7c3-646ca448bebd","originalAuthorName":"陈振华"}],"doi":"","fpage":"469","id":"944859ef-3d60-40d5-a06b-f08268295e0a","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"f56a7fb0-147a-461a-baed-3c24dc00fd67","keyword":"SiC颗粒","originalKeyword":"SiC颗粒"},{"id":"7a5dde14-00a9-4eeb-86bc-7a8eceff23af","keyword":"耐热合金","originalKeyword":"耐热合金"},{"id":"85fde994-4d4c-4830-8d7c-3575cdddac2b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"9031b7ac-55f2-4d89-8aaf-216a9193cf44","keyword":"喷射沉积","originalKeyword":"喷射沉积"},{"id":"fed94e18-ff8f-4c8f-969c-756c184b852c","keyword":"断裂行为","originalKeyword":"断裂行为"}],"language":"zh","publisherId":"zgysjsxb201003015","title":"不同拉伸温度下SiC颗粒增强Al-Fe-V-Si 复合材料的断裂行为","volume":"20","year":"2010"},{"abstractinfo":"The icosahedral quasicrvstalline phase (i-phase) with the chemical composition of 82.4at%Al. 8.8at%Fe. 3.6at%V and 5.2at%Si in melt spun Al-Fe-V-Si ribbons was found. It is suggested that the temperature and holding time of the melt prior to quenching are the important factors in the formation of the i-phase.","authors":[{"authorName":"GUAN Shaokang","id":"95124f92-08cf-4244-ab91-981df7fce673","originalAuthorName":"GUAN Shaokang"},{"authorName":" TANG Yali","id":"57508654-afdd-4c2a-bbb5-daf60491bedb","originalAuthorName":" TANG Yali"},{"authorName":" SHEN Ningfu","id":"b042269f-dc3e-49c2-a77b-ba0eabc9069a","originalAuthorName":" SHEN Ningfu"},{"authorName":" ZHAO DongshanZhengzhou Institute of Technology. Zhengzhou. ChinaHU HanqiUniversity of Science and Technology Beijing. Beijing","id":"2d201afe-e438-4f1c-9c1d-4dfc49911829","originalAuthorName":" ZHAO DongshanZhengzhou Institute of Technology. Zhengzhou. ChinaHU HanqiUniversity of Science and Technology Beijing. Beijing"},{"authorName":" China","id":"cc7c257b-6c88-418c-ac88-17dfe6f77945","originalAuthorName":" China"}],"categoryName":"|","doi":"","fpage":"167","id":"e85fa27e-94ad-4db9-8952-b846c1d1bd22","issue":"3","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"3e5848ed-0357-4d9e-aba6-cd4ac3b7d1c2","keyword":"quasicrvstalline phase","originalKeyword":"quasicrvstalline phase"},{"id":"5ab83ca6-2275-41a4-b24b-77cdf9e2e9e6","keyword":"null","originalKeyword":"null"},{"id":"bf89976b-6865-446f-a949-77050677a203","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1994_3_4","title":"FORMATION OF QUASICRYSTALLINE PHASE IN RAPIDLY SOLIDIFIED Al-Fe-V-Si ALLOY","volume":"7","year":"1994"},{"abstractinfo":"快速凝固技术制备Al-Fe-V-Si系合金,可以获得细小弥散且高温下扩散率低的第二相粒子,从而获得良好的耐热性能.本文综述了Al-Fe-V-Si系合金的发展历程,着重介绍了Al-Fe-V-Si系合金的制备工艺、微观组织控制及强化措施;分析了该合金目前发展中存在的问题,并阐述了该合金今后的发展应重点集中在工艺优化、提高热稳定等方面.","authors":[{"authorName":"刘莹莹","id":"3f3b0cba-6e7f-4a2a-87fd-11c00d2405db","originalAuthorName":"刘莹莹"},{"authorName":"郑立静","id":"f669507c-8a48-4cf7-af3e-d77068c3735f","originalAuthorName":"郑立静"},{"authorName":"张虎","id":"4c7ba77a-3684-42d0-9102-5d056c2869d9","originalAuthorName":"张虎"}],"doi":"10.11868/j.issn.1001-4381.2015.11.015","fpage":"91","id":"157c4015-8fcf-4a54-8228-8eff19839bb2","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"6e2a9171-e673-4dbb-a923-2c1ac0b042ab","keyword":"Al-Fe-V-Si系合金","originalKeyword":"Al-Fe-V-Si系合金"},{"id":"1847930f-1f08-4c80-b3c1-1f3aed4bbd8b","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"4d701b0f-3b6d-435e-9615-d5679ae0b4cc","keyword":"组织控制","originalKeyword":"组织控制"},{"id":"745d67b7-903a-47e6-a28a-723fc8483412","keyword":"强化措施","originalKeyword":"强化措施"}],"language":"zh","publisherId":"clgc201511015","title":"快速凝固Al-Fe-V-Si耐热铝合金研究进展","volume":"43","year":"2015"},{"abstractinfo":"The creep behavior of dispersion-strengthened Al-8.5Fe-1.3V-1.7Si (8009 Al) has been investigated in the temperature range of 573-723 K. The results exhibit a high apparent stress exponent (14-18) and a high apparent activation energy for creep (296 kJ mol(-1)). The creep data were analyzed by incorporating a threshold stress into the power-law creep equation, which leads to a stress exponent of 5 indicating dislocation-climb mechanism. Traditional dislocation creep theories neither lead to correct values nor explain the origin or temperature dependence of the threshold stress, which is much stronger than that attributable to the shear modulus. A good correlation between experimental and theoretical prediction using the dislocation detachment model was obtained by adjusting the structure factor in the creep equation because the dislocation density is not well known. Dislocation/particle interactions as well as dislocation networks and subgrains are frequently observed after creep tests at different conditions. (C) 1999 Elsevier Science S.A. All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"25","id":"98ade4c1-f5bd-4e9d-b027-b85d37369bec","issue":"1","journal":{"abbrevTitle":"MSAEAMPMAP","id":"29fa6a83-07f2-4d3a-af3e-fac686227352","issnPpub":"0921-5093","publisherId":"MSAEAMPMAP","title":"Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing"},"keywords":[{"id":"4983d18f-e51a-4760-8bcc-399d4e21a4c6","keyword":"dispersion-strengthened;aluminum alloys;creep;stress exponent;activation energy;threshold stress;dislocation detachment;relaxation;parameter;dislocation climb;matrix composites;powder-metallurgy;threshold;stress;behavior;aluminum;particles;strength;model","originalKeyword":"dispersion-strengthened;aluminum alloys;creep;stress exponent;activation energy;threshold stress;dislocation detachment;relaxation;parameter;dislocation climb;matrix composites;powder-metallurgy;threshold;stress;behavior;aluminum;particles;strength;model"}],"language":"en","publisherId":"0921-5093_1999_1_2","title":"High temperature creep deformation of an Al-Fe-V-Si alloy","volume":"259","year":"1999"},{"abstractinfo":"采用OM、SEM、XRD、力学拉伸实验、硬度测试等手段研究了单独添加Mg及同时添加Mg和Cu对铸态Al-Fe-V-Si合金及其热挤压棒材显微组织和力学性能的影响.结果表明:添加Mg可以明显细化Al-Fe-V-Si合金的铸态组织,改善铝铁相的形貌与分布,还有利于提高合金的硬度与强度;同时添加Mg和Cu时,Cu部分抵消了Mg的细化作用,但经过热处理后,Mg2.SiAl2Cu和Al2CuMg相的形成,使合金的硬度与强度进一步提高.","authors":[{"authorName":"张林林","id":"8c9276dd-f370-4bfd-8242-24ab00c45fd5","originalAuthorName":"张林林"},{"authorName":"肖于德","id":"d5d1f068-b594-425f-999d-84780dba01d6","originalAuthorName":"肖于德"},{"authorName":"周娟","id":"76130a61-96bf-4a73-b41f-c231ae55f598","originalAuthorName":"周娟"},{"authorName":"黎文献","id":"0956e655-3cbe-4203-be1e-4ab47cd5e2e7","originalAuthorName":"黎文献"}],"doi":"","fpage":"874","id":"b385b9cc-7d33-4f7a-9388-31d3faf5a9ba","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"9dcca652-77d8-438c-a681-824a7cd44b4a","keyword":"Al-Fe-V-Si合金","originalKeyword":"Al-Fe-V-Si合金"},{"id":"8ccf46d4-bdf0-4772-aaed-062aae889ce0","keyword":"镁","originalKeyword":"镁"},{"id":"a2554525-f9f4-4c14-90b3-7c235bac5f0f","keyword":"铜","originalKeyword":"铜"},{"id":"d3bb567e-5503-484d-8bf1-24248fc6c474","keyword":"组织","originalKeyword":"组织"}],"language":"zh","publisherId":"zgysjsxb200605022","title":"添加Mg和Cu对Al-Fe-V-Si合金组织与性能的影响","volume":"16","year":"2006"},{"abstractinfo":"用Mossbauer谱研究了快速凝固Al-Fe-V-Si合金的微结构,结果表明,合金中Fe原子存在α-AlFe),α-AlFe-Fe)替代固溶体及α-Al13(FeV)3Si金属间化合物三种组态,高温热曝露状态除4.3%Fe合金(原子分数)α-AlFe-Fe)组态消失外,其它合金组态类型不变,但含量发生相对变化,急冷态和退火态α-Al晶格常数随合金中Fe含量增加呈现不同程度的下降趋势,归因于两种状态组分原子FeVSi含量的变化。","authors":[{"authorName":"王建强","id":"fbb24c82-4a64-4073-ad07-643f1152eea9","originalAuthorName":"王建强"},{"authorName":"曾梅光","id":"662134b6-3f8a-4021-a5a7-faab2dbc8e74","originalAuthorName":"曾梅光"},{"authorName":"晁月盛","id":"080e7d1f-054d-45a2-8ba3-3674051043fa","originalAuthorName":"晁月盛"},{"authorName":"张宝金","id":"62c5602d-51a0-4937-915b-8a335ce207f0","originalAuthorName":"张宝金"},{"authorName":"胡壮麒","id":"2418ea9d-c069-411d-97f0-92067035ef0c","originalAuthorName":"胡壮麒"}],"categoryName":"|","doi":"","fpage":"359","id":"3e9e4d46-91eb-4356-9681-d145d70702bd","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"15b6362e-0f28-4e22-81fc-5606fcfdda42","keyword":"快速凝固","originalKeyword":"快速凝固"},{"id":"f88e9fda-6f16-46d6-b8fa-af8dfcca268e","keyword":" Al-Fe-V-Si alloys","originalKeyword":" Al-Fe-V-Si alloys"},{"id":"5d9a8730-cd7f-4d29-ad52-4a5ed373e4c2","keyword":" Mossbauer spectraum","originalKeyword":" Mossbauer spectraum"},{"id":"82f54363-7626-4dea-bb2b-30012949b27b","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1997_4_11","title":"快速凝固Al-Fe-V-Si合金微结构Mossbauer谱研究","volume":"33","year":"1997"}],"totalpage":10199,"totalrecord":101987}