{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于\"固体与分子经验电子理论(EET)\"计算了高岭石的价电子结构,分析了相的空间键络分布,指出了存在的薄弱环节.硅氧四面体中最强键nA=1.37457和次强键nB=1.45692构成了坚固的网状结构;相对而言,铝氧八面体的键合较弱,键强分别为nC=0.38433、nD=0.39188;弱键集中于八面体与四面体的一侧连接上,造成了OI-OⅢ层间键合强度最弱,易于拆散.","authors":[{"authorName":"张伟","id":"f740648d-3d3b-4161-8f6d-15435cd531c6","originalAuthorName":"张伟"},{"authorName":"张寿庭","id":"b53dbe3b-19b9-4c63-b0de-fb11796e6058","originalAuthorName":"张寿庭"},{"authorName":"王彦春","id":"0c586676-fd82-4969-b702-b8305e888da7","originalAuthorName":"王彦春"},{"authorName":"刘伟东","id":"e453a542-fc02-4430-b091-1e5d9699b7d6","originalAuthorName":"刘伟东"}],"doi":"","fpage":"70","id":"db0978aa-6a39-4156-a46a-97dc8ef464cd","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fc38f296-590d-417a-af49-6fc9b5f908e5","keyword":"高岭石","originalKeyword":"高岭石"},{"id":"6e019880-a837-4865-80b0-0b101fa6ac2f","keyword":"价电子结构","originalKeyword":"价电子结构"},{"id":"e5ea8a28-6cb5-44b5-8622-a222b6e46a1d","keyword":"键络结构","originalKeyword":"键络结构"}],"language":"zh","publisherId":"cldb200902022","title":"高岭石电子结构计算及键络分析","volume":"23","year":"2009"},{"abstractinfo":"氧化铝陶瓷以其良好的绝缘性能广泛应用于高压真空器件,起到绝缘和支撑作用,但氧化铝陶瓷的沿面闪络现象严重制约了其耐压性能.分析了阴极金属一陶瓷一真空三结合处电场局部增强的原因,对阴极金属电极结构对柱状氧化铝陶瓷三结合处电场分布影响进行了仿真和单次脉冲耐压试验研究,给出了不同电极情况下,氧化铝陶瓷的耐压结果.结果表明,弯曲电极结构能有效减弱氧化铝陶瓷三结合处的电场强度,并且随着金属电极弯曲长度的增加而明显减小;相对于平板电极,弯曲电极的平均最高耐压提高了45%.","authors":[{"authorName":"程焰林","id":"3fe1e661-b7d4-400b-9668-60b64b7e64bf","originalAuthorName":"程焰林"},{"authorName":"向伟","id":"86a70be3-e734-4dbd-8cde-4cdcd31cbe0a","originalAuthorName":"向伟"},{"authorName":"雷杨俊","id":"512aa6dc-a16a-4593-a506-c0aed9e551af","originalAuthorName":"雷杨俊"},{"authorName":"罗永刚","id":"8bb20a84-f7e1-421f-a2f7-641dff1d0906","originalAuthorName":"罗永刚"}],"doi":"10.3969/j.issn.1009-9239.2008.01.015","fpage":"49","id":"d663c595-8ac4-454a-a615-7815b322ebf5","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"57d4cd80-9048-43fa-9d7e-87c9e878e61a","keyword":"真空","originalKeyword":"真空"},{"id":"9a545961-39d8-4927-8fd4-e0bfbe13bc5a","keyword":"氧化铝陶瓷","originalKeyword":"氧化铝陶瓷"},{"id":"fae2629d-0467-4dfd-9f74-b4be88501fb9","keyword":"弯曲电极","originalKeyword":"弯曲电极"},{"id":"93041ad2-c501-4a52-b789-2e227e71fb8e","keyword":"脉冲耐压","originalKeyword":"脉冲耐压"}],"language":"zh","publisherId":"jycltx200801015","title":"弯曲电极结构对真空中氧化铝陶瓷沿面闪络耐压的影响","volume":"41","year":"2008"},{"abstractinfo":"运用固体经验电子理论(EET),对Al-Li合金时效初期的若干偏聚晶胞的价电子结构进行了计算.计算结果表明:不包含空位的偏聚晶胞的键络最强键为Al-Al键,其中Al原子的共价半径较Li原子的共价半径要大;而含空位的偏聚晶胞的最强键为Al-Li键,Al原子的共价半径要比Li原子的共价半径要小;在空位存在的情况下,由于Al原子与Li原子的电负性相差明显,促使Al和Li原子结合,倾向形成Al-Li短程序结构偏聚区,这种含空位的短程序结构很可能就是δ′(Al3Li)亚稳相的前兆结构和生长胚胎;由于Al-Li-空位有序偏聚晶胞的Al-Li键络比基体键络要强许多,因此,淬火过程中合金生成的Al-Li-空位偏聚晶胞对合金过饱和固溶体起主要强化作用;后续析出的δ′(Al3Li)亚稳相键络各项异性显著,键络强度明显提高;由于Al3Li与基体共格,其大量均匀弥散析出起到提升基体整体键络强度,同样对合金产生强化作用.","authors":[{"authorName":"高英俊","id":"393dd650-edd6-40dd-a5bc-d6d7588cc431","originalAuthorName":"高英俊"},{"authorName":"黄创高","id":"7606db5a-189d-4c97-b06c-80bcbb7fc71e","originalAuthorName":"黄创高"},{"authorName":"莫其逢","id":"c75ccc74-42a4-4b75-b1e1-54b6e8589a33","originalAuthorName":"莫其逢"},{"authorName":"蓝志强","id":"4209e21f-67b7-4e0a-9477-6d7aafca43be","originalAuthorName":"蓝志强"},{"authorName":"刘慧","id":"2229c1da-f1e2-4517-8dfd-1769941f43f9","originalAuthorName":"刘慧"},{"authorName":"韦银燕","id":"dff993b8-9ade-4e17-a593-06d88b4c7b85","originalAuthorName":"韦银燕"}],"doi":"","fpage":"1069","id":"9446a7ad-5214-4973-ac76-bf3bd2b87da2","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"a12bc4ce-726b-44bb-9168-e5b62b0d004e","keyword":"Al-Li合金","originalKeyword":"Al-Li合金"},{"id":"9330ff84-179e-486c-9cd5-3a32732ec371","keyword":"Al3Li","originalKeyword":"Al3Li"},{"id":"25463f73-89af-4965-929d-939a157bf27b","keyword":"空位","originalKeyword":"空位"},{"id":"3288d334-1fbe-41e4-99cd-7f8c1b1240e1","keyword":"价电子结构","originalKeyword":"价电子结构"},{"id":"934c5af3-5f5b-4632-a9f6-735775d2b9d7","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"zgysjsxb200507014","title":"Al-Li合金时效初期的价键分析","volume":"15","year":"2005"},{"abstractinfo":"应用基于价键理论和能带理论建立的固体与分子经验电子理论(EET)和改进的界面 TFD 理论,对Al-Mg-Si合金的β′析出相内部原子间的价电子成键及其与基体界面间形成的界面键络特征进行研究,计算该析出相的结合能、析出相与基体的界面能.计算结果表明:β′相的键络强度较pre-β″和β″相的有所减弱,因此,β′相对合金的强化作用没有β″相的显著;β′相界面处的电荷密度连续性较弱,使得界面结合较弱,相界面处内应力较大,界面结合不够稳定.本研究将合金宏观性能的研究追溯到原子成键的电子结构层次.","authors":[{"authorName":"黄创高","id":"955842ff-5a95-4e52-8902-2754ce5fb0a2","originalAuthorName":"黄创高"},{"authorName":"黄礼琳","id":"a9ecce35-9c04-45af-abae-14faacae2439","originalAuthorName":"黄礼琳"},{"authorName":"袁龙乐","id":"6fd482fa-3c3c-40fd-b854-7efd48aae6d3","originalAuthorName":"袁龙乐"},{"authorName":"邓芊芊","id":"a4b977c2-6ac7-4e8b-a3ad-1a6f217f7da0","originalAuthorName":"邓芊芊"},{"authorName":"高英俊","id":"8de329cb-6549-4826-bb18-46ac2ccd8a8a","originalAuthorName":"高英俊"}],"doi":"","fpage":"610","id":"8c82a5fe-70ba-4acf-97d3-3f2f27196e81","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"73f9aba5-0bba-4f91-9ab4-2b07a39abbc7","keyword":"Al-Mg-Si合金","originalKeyword":"Al-Mg-Si合金"},{"id":"b1c42288-41c8-4f61-a259-bc7b412e2152","keyword":"β′析出相","originalKeyword":"β′析出相"},{"id":"79183bb5-f75e-4c97-a711-424a91d36484","keyword":"原子成键","originalKeyword":"原子成键"},{"id":"09090e68-2add-4ada-990c-2d1bbde6d670","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"zgysjsxb201303003","title":"Al-Mg-Si合金β′析出相的界面原子键络对性能的影响","volume":"","year":"2013"},{"abstractinfo":"使用CF4和CH4为源气体,利用射频等离子体增强化学气相沉积法,制备了a-C:F:H薄膜样品.采用拉曼光谱仪、傅里叶变换红外光谱仪、X射线光电子能谱仪(XPS)对薄膜的结构进行了测试和分析.研究发现:该膜呈空间网状结构,膜内碳与氟、氢的结合主要以sp3形式存在,而sp2形式的含量相对较少;在薄膜内主要含有C-Fx(x=1,2,3)、C-C、C-H2、C-H3等以及不饱和C=C化学键;同时,薄膜中C-C-F键的含量比C-C-F2键的含量要高.在不同功率下沉积的薄膜,其化学键结构明显不同.","authors":[{"authorName":"肖剑荣","id":"d5cd55db-51af-4ffa-b77d-07107d4a1f1e","originalAuthorName":"肖剑荣"},{"authorName":"徐慧","id":"60319c7e-bd44-4025-a8e8-4a1e97a3c6e5","originalAuthorName":"徐慧"},{"authorName":"李幼真","id":"2edd9417-5be2-49dd-b6b7-5f4638075b40","originalAuthorName":"李幼真"},{"authorName":"刘雄飞","id":"650ab986-5ceb-47a8-8173-da3ed793a8a8","originalAuthorName":"刘雄飞"},{"authorName":"马松山","id":"4a9ab7f8-6350-46a2-b9be-a5f4fb4039a0","originalAuthorName":"马松山"},{"authorName":"简献忠","id":"5545c2c7-a30a-4878-bb1e-c34f27a89821","originalAuthorName":"简献忠"}],"doi":"","fpage":"1589","id":"9b1c35bd-9a0c-4de8-9d8c-dd65e137d126","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"9de0974a-e422-475d-b659-1306cfd750ba","keyword":"a-C:F:H薄膜","originalKeyword":"a-C:F:H薄膜"},{"id":"c639f279-5f57-4ecb-a474-90fa77c422c7","keyword":"等离子体增强化学气相沉积","originalKeyword":"等离子体增强化学气相沉积"},{"id":"8b7f1713-4a68-4f1b-9f89-e7b8a9855cd1","keyword":"低介电常数","originalKeyword":"低介电常数"},{"id":"e0923a9a-98ee-416b-b7d7-cd2966341032","keyword":"化学键","originalKeyword":"化学键"}],"language":"zh","publisherId":"zgysjsxb200510019","title":"a-C:F:H薄膜的化学键结构","volume":"15","year":"2005"},{"abstractinfo":"利用电荷自治离散变分Xα(SCC-DV-)Xα方法计算了LaNi5及其氢化物的电子结构, 分析了LaNi5合金氢化物中氢原子与合金元素的成键方式, 合金中氢化物形成元素与非形成元素的作用机理. 在LaNi5的氢化物中, Ni 4p与H 1s轨道作用形成共价键; Ni原子与La原子也有轨道离域成键, 但随氢原子的进入而减弱; 吸氢使LaNi5的a轴比c轴更容易发生变化.","authors":[{"authorName":"郭进","id":"ef2d2269-6d1e-49c5-9824-bea3e48648d8","originalAuthorName":"郭进"},{"authorName":"韦文楼","id":"9c1e9767-3634-48fe-95b6-b9e150d0f66f","originalAuthorName":"韦文楼"},{"authorName":"马树元","id":"309417fd-34c0-4435-b3f2-31c0ea5c1ad1","originalAuthorName":"马树元"},{"authorName":"高英俊","id":"a9891174-a141-4d9f-b9a0-96befcb718c8","originalAuthorName":"高英俊"},{"authorName":"方志杰","id":"98aa1f26-3c05-4802-b3c8-68f92979fd63","originalAuthorName":"方志杰"}],"categoryName":"|","doi":"","fpage":"10","id":"f2d05b3e-c1a6-4942-b256-7da8dbf71aab","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8b156130-e416-4312-8197-c46dc3869315","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"cd811e5c-beb9-4c32-9439-9d6479b3c86c","keyword":"null","originalKeyword":"null"},{"id":"06046e0b-39ff-4173-a917-69747896d15e","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_1_3","title":"LaNi5电子结构与成键特征","volume":"39","year":"2003"},{"abstractinfo":"利用电荷自洽离散变分Xα(SCC-DV-Xα)方法计算了LaNi5及其氢化物的电子结构,分析了LaNi5合金氢化物中氢原子与合金元素的成键方式,合金中氢化物形成元素与非形成元素的作用机理.在LaNi5的氢化物中,Ni 4p与H 1s轨道作用形成共价键;Ni原子与La原子也有轨道离域成键,但随氢原子的进入而减弱;吸氢使LaNi5的a轴比c轴更容易发生变化.","authors":[{"authorName":"郭进","id":"8ad2e873-b9d3-4f73-a3ad-707f001de8df","originalAuthorName":"郭进"},{"authorName":"韦文楼","id":"434e77fe-d8e3-42b4-9382-1c0922a57a99","originalAuthorName":"韦文楼"},{"authorName":"马树元","id":"e7051d43-3444-477b-b170-3a682dea75c4","originalAuthorName":"马树元"},{"authorName":"高英俊","id":"b21c95ff-f91b-406f-8e8e-d4296aac557c","originalAuthorName":"高英俊"},{"authorName":"方志杰","id":"259f3206-31b8-4fc9-92d7-40789266b8f6","originalAuthorName":"方志杰"}],"doi":"10.3321/j.issn:0412-1961.2003.01.003","fpage":"10","id":"6064397e-33a8-4cc3-9ac7-b2dff928550c","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2a4f7c51-f547-4c99-af3b-358d7222b73a","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"56d4e76f-ff73-428c-9178-44a6451fb66d","keyword":"成键特征","originalKeyword":"成键特征"},{"id":"643b3125-5f93-425d-b211-e7d340d2065e","keyword":"LaNi5氢化物","originalKeyword":"LaNi5氢化物"}],"language":"zh","publisherId":"jsxb200301003","title":"LaNi5电子结构与成键特征","volume":"39","year":"2003"},{"abstractinfo":"将Zn粉末置于流量为500ml/min的NH3气流中,在600℃氮化120 min,制备出高质量的Zn3N2粉末.X射线衍射(XRD)表明Zn3N2粉末具有立方结构,其晶格常数为0.9788 nm.扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察发现Zn3N2粉末晶粒形状具有多样性.X射线光电子谱(XPS)表明Zn3N2的化学键状态与ZnO及金属Zn明显不同,表明N-Zn键的形成.用计算机模拟了Zn3N2晶体的立体结构,用高分辨电子显微镜(HRTEM)观察了Zn3N2粉末的内部结构,观察结果与Partin等提出的Zn3N2结构模型相符合.","authors":[{"authorName":"宗福建","id":"0825c5f7-f3a7-4342-aa18-5c3f58d7d3a3","originalAuthorName":"宗福建"},{"authorName":"马洪磊","id":"0c93e584-6809-4ac0-a878-6066edd49351","originalAuthorName":"马洪磊"},{"authorName":"薛成山","id":"fa8abb9c-118f-4ac6-9b8b-f70ac78f9ae1","originalAuthorName":"薛成山"},{"authorName":"杜伟","id":"0818f124-48f6-48eb-92f2-df8175052e16","originalAuthorName":"杜伟"},{"authorName":"张锡建","id":"04df110f-9f4f-4324-a246-325f655b38c6","originalAuthorName":"张锡建"},{"authorName":"马瑾","id":"753f07a9-532c-4823-8524-437bd61d3f53","originalAuthorName":"马瑾"},{"authorName":"计峰","id":"84dbaafb-fd47-41f0-9101-540ca7566a7f","originalAuthorName":"计峰"},{"authorName":"肖洪地","id":"9c82119f-7fb3-416e-b4a3-4ea811359f00","originalAuthorName":"肖洪地"}],"doi":"","fpage":"55","id":"50308fb2-27f3-43cf-9165-51503a9da301","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"7de12632-3bdd-43c7-b5a0-5ac47764295e","keyword":"氮化法","originalKeyword":"氮化法"},{"id":"229e0251-2cc9-4052-9945-addcbf4296eb","keyword":"Zn3N2","originalKeyword":"Zn3N2"},{"id":"d1a028dc-a4d6-4611-99c2-bea8f3d99ff8","keyword":"结构","originalKeyword":"结构"},{"id":"d74e335e-e57b-4c5b-8d92-89889f70a9dc","keyword":"化学键状态","originalKeyword":"化学键状态"}],"language":"zh","publisherId":"xyjsclygc200601014","title":"氮化锌粉末的结构和化学键状态","volume":"35","year":"2006"},{"abstractinfo":"对玻璃/铝/玻璃3层结构进行阳极键合试验,分析键合温度和电压对键合电流的影响;通过扫描电镜对键合界面的微观结构进行分析,表明键合界面良好;对玻璃/铝/玻璃3层结构阳极键合机理进行探讨,认为键合界面处接通电流瞬间产生的强大的静电场力是实现玻璃/铝/玻璃界面紧密接触并形成良好界面键合的主要原因.","authors":[{"authorName":"秦会峰","id":"1ae19dba-541e-4e5b-b451-c903deb8331c","originalAuthorName":"秦会峰"},{"authorName":"孟庆森","id":"c9363512-429e-43f5-ab7f-8ccb270469c9","originalAuthorName":"孟庆森"}],"doi":"33-1331/TJ.20111222.1455.003","fpage":"32","id":"c71be9f8-a442-4395-938c-6e1827eadcdc","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"24ff4214-17dc-46a0-b45d-4f9ac67b7072","keyword":"阳极键合","originalKeyword":"阳极键合"},{"id":"f352a546-2438-405f-8651-2377b2dbb9e2","keyword":"硼硅玻璃","originalKeyword":"硼硅玻璃"},{"id":"87031153-db07-4ecd-b7ec-56984d9fc5eb","keyword":"铝","originalKeyword":"铝"},{"id":"ce66c98b-39c5-4c37-93e5-de60e70bbd28","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"bqclkxygc201201010","title":"玻璃/铝/玻璃三层结构阳极键合机理分析","volume":"35","year":"2012"},{"abstractinfo":"应用EET理论和改进的TFD理论对Al-Mg-Si合金时效过程中析出的U1与U2相的原子成键和结合能进行计算.结果表明:两相晶胞中最强键和次强键都是Al-Si键,其键络比基体Al晶胞中的最强键络都强得多;两析出相晶胞中都以较强的Al-Si键构成主要键络骨架结构,起到增强基体键络强度、强化合金的作用.由于析出相U1比析出相U2具有更强的Al-Si键络结构,且结合能较大,因此,相对U2相来说,U1相更稳定.计算结果还表明:(001)Al//(110)U1相界面处电荷保持连续且连续性较好,界面应变能较低,界面较稳定;界面(001)Al// (010)U2处的面电荷密度偏离连续条件,因此在此界面处,应力较大,界面原子键匹配较差,界面储能(应变能)较高,容易成为新相形核、长大和裂纹萌生的地方.","authors":[{"authorName":"高英俊","id":"3d1de189-021d-4de0-a6bd-f6a78904c735","originalAuthorName":"高英俊"},{"authorName":"陈华宁","id":"64f022c4-d741-4776-a2e6-c8e0f4b0b7fc","originalAuthorName":"陈华宁"},{"authorName":"韦娜","id":"41967f0e-eb5b-49ca-981c-05927cad98b8","originalAuthorName":"韦娜"},{"authorName":"文春丽","id":"ca807952-9889-4a60-ada1-7ffc88ac533e","originalAuthorName":"文春丽"},{"authorName":"黄创高","id":"df873d9b-41b8-4027-ba8a-a5c01c56cd13","originalAuthorName":"黄创高"}],"doi":"","fpage":"1267","id":"e70a3e72-2f8f-48dc-bf81-38ea053da1af","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"676f9d08-4fdc-4821-b777-9f80665f0968","keyword":"Al-Mg-Si合金","originalKeyword":"Al-Mg-Si合金"},{"id":"d8ee8cff-2043-45f5-ba14-8d2303a4875b","keyword":"U1和U2相","originalKeyword":"U1和U2相"},{"id":"ff7cafa1-f122-4a86-8fdc-a5383b047791","keyword":"原子成键","originalKeyword":"原子成键"},{"id":"37f32b69-82ff-4f57-b56d-c8e78843958b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"zgysjsxb201007004","title":"Al-Mg-Si合金中U1和U2相的原子成键与性能","volume":"20","year":"2010"}],"totalpage":6065,"totalrecord":60642}