{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用共沉淀法制备Mn-Al双氢氧化物吸附剂,并利用扫描电子显微镜(Scanning Electron Microscope,SEM)、红外光谱(Fourier transform infrared spectroscopy,FTIR)和比表面积分析仪(Brunauer-Emmett-Teller surface area,BET)等对吸附材料进行了分析.并考察了其对氟离子吸附过程的热力学和动力学,并计算不同温度下该吸附过程的热力学参数.实验结果表明:pH值对Mn-Al吸附剂除氟效能有一定的影响,pH值为6时吸附容量最佳达到了44.15 mg·g-1;实验数据遵循拟二级反应动力学模型;Mn-Al吸附剂对氟离子的吸附符合Langmuir-Freundlich吸附等温模型;热力学参数吉布斯自由能(△G0)小于零,焓变(△H0)>0,熵变(△S0)>0,说明Mn-Al双氢氧化物吸附剂对氟离子的吸附反应是自发吸热熵增过程.","authors":[{"authorName":"胡家朋","id":"8858dffc-9759-407a-b3bf-93e3bcbfcc4e","originalAuthorName":"胡家朋"},{"authorName":"吴代赦","id":"d1493aac-ee9c-4027-b3a5-00e910aded7e","originalAuthorName":"吴代赦"},{"authorName":"","id":"8ed00493-7252-4b13-81c2-e2698f068b14","originalAuthorName":"饶瑞晔"},{"authorName":"陈喆","id":"aedfc260-62e7-4dc9-b3a8-31ef47552134","originalAuthorName":"陈喆"},{"authorName":"赖文亮","id":"b5ffd531-c78a-48fb-9487-4cc19e7d5edd","originalAuthorName":"赖文亮"}],"doi":"","fpage":"1071","id":"770694a0-424d-462d-bc89-706513beb7df","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"7b160047-9485-47d4-bc40-f3e885f8195b","keyword":"氟离子","originalKeyword":"氟离子"},{"id":"e9eb6a90-f285-4092-ba5d-b2f8681dbd50","keyword":"Mn-Al双氢氧化物","originalKeyword":"Mn-Al双氢氧化物"},{"id":"5586575e-a14f-4fe3-ac0b-41ffec6e7011","keyword":"吸附热力学","originalKeyword":"吸附热力学"},{"id":"12561841-b20d-49a5-9369-1162974691c2","keyword":"吸附动力学","originalKeyword":"吸附动力学"}],"language":"zh","publisherId":"gsytb201504033","title":"Mn-Al双氢氧化物对氟离子的吸附热力学和动力学研究","volume":"34","year":"2015"},{"abstractinfo":"采用共沉淀法制备Mn-Al双金属氢氧化物吸附剂,优化了合成条件,并利用扫描电子显微镜(Scanning electron microscope,SEM)及能谱分析仪(Energy dispersive spectrometer,EDS)、X射线衍射仪(X-ray diffraction,XRD)、热重分析仪(Thermogravimetric analyzer,TGA)、比表面积分析仪(Brunauer-Emmett-Teller surface area,BET)等对吸附材料进行表征探讨.研究结果表明pH值和共存离子等因素对Mn-Al双金属氢氧化物吸附剂除氟效能有一定的影响,在pH为6时,达到最大吸附容量,为44.15 mg·g-1,氯离子和硝酸根离子能够提高吸附剂除氟效率,磷酸根离子与氟离子有一定的竞争吸附.","authors":[{"authorName":"胡家朋","id":"3be4c0a8-1e29-4f70-9216-568ac0883a61","originalAuthorName":"胡家朋"},{"authorName":"吴代赦","id":"b32ddb8c-f62e-47cf-b12f-8cc84414b754","originalAuthorName":"吴代赦"},{"authorName":"","id":"143ff787-de23-4a41-9e5d-346f21d8a26c","originalAuthorName":"饶瑞晔"},{"authorName":"陈喆","id":"f585f114-30a3-4f2f-b275-ba700582a092","originalAuthorName":"陈喆"},{"authorName":"赖文亮","id":"1627afa2-ca87-4cea-ade7-9067fcca359c","originalAuthorName":"赖文亮"}],"doi":"10.11896/j.issn.1005-023X.2015.02.004","fpage":"15","id":"8daa3fa1-982b-401d-8a0b-2884844fe1ad","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"98d0a846-7b0d-4a1e-b548-8cb802b2545d","keyword":"Mn-Al双金属氢氧化物","originalKeyword":"Mn-Al双金属氢氧化物"},{"id":"7f88c155-5f73-409a-bcaf-d56ce3c7ba69","keyword":"除氟","originalKeyword":"除氟"},{"id":"b8064bca-dd79-4837-a219-501c6d89ab80","keyword":"吸附","originalKeyword":"吸附"},{"id":"10c01dc2-29d3-46e1-93a6-cc92c22bf34d","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"cldb201502004","title":"Mn-Al双金属氢氧化物的制备及其除氟性能","volume":"29","year":"2015"},{"abstractinfo":"石油开采和油船运输泄露的油污污染日益突出,使得质轻、亲水疏油的油水分离材料得到广泛关注. 本文在无任何添加剂条件下,以三醋酸纤维素(TCA)/N,N-二甲基乙酰胺(DMAc)溶液通过热致相分离(TIPS)制备TCA纳米纤维膜. 研究了淬火时间、温度和聚合物浓度等条件对TCA纳米纤维膜形貌的影响. TCA纳米纤维膜的形貌、孔隙率和比表面积通过SEM、乙醇法和N2吸脱附表征. 实验结果表明,最佳实验条件为:淬火时间180 min、淬火温度-20 ℃、聚合物质量分数5%,得到直径为(110±28) nm均匀纤维膜. 与块状TCA流延膜相比,TCA纳米纤维膜的高孔隙率和大比表面积以及表面特殊的微/纳结构,使其水接触角由86.2°增加到137.5°. 由于高疏水性和亲油性以及强烈的毛细作用,TCA纳米纤维膜的吸油容量达到21.5 g/g,分别是流延膜的20~42倍,且可快速吸收油水混合物中的油层. TCA纳米纤维膜是一种可生物降解的溢油污染清洁材料.","authors":[{"authorName":"刘俊劭","id":"24230193-57f2-40ad-9690-eec1bf94d102","originalAuthorName":"刘俊劭"},{"authorName":"刘来","id":"0dfdec32-7ff7-4075-948a-fbe7a8b82286","originalAuthorName":"刘瑞来"},{"authorName":"赵瑨云","id":"9acadfae-8d4f-4b77-a473-322de895defd","originalAuthorName":"赵瑨云"},{"authorName":"","id":"41b53154-4963-46f5-aca3-c7e11396b91f","originalAuthorName":"饶瑞晔"}],"doi":"10.11944/j.issn.1000-0518.2017.05.160333","fpage":"512","id":"c69e5b8d-ba79-4caf-825c-d2fe54c743ea","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"aa247c87-1c9b-4e4c-89fb-fdc2e908e727","keyword":"热致相分离","originalKeyword":"热致相分离"},{"id":"a6c16778-2e89-4e10-abf8-a1ee636474f0","keyword":"三醋酸纤维素","originalKeyword":"三醋酸纤维素"},{"id":"024290cc-ca2f-4896-8390-61e12268664f","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"afe6f6f9-6770-4b88-9189-df61fb005be3","keyword":"油水分离","originalKeyword":"油水分离"}],"language":"zh","publisherId":"yyhx201705003","title":"三醋酸纤维素纳米纤维膜的制备及其油水分离应用","volume":"34","year":"2017"},{"abstractinfo":"将聚乳酸(PLLA)/四氢呋喃(THF)溶液分散在甘油(连续相)中,通过自乳化结合热致相分离(TIPS)制备一系列PLLA多孔微球,微球由捆束状纳米纤维组成.通过改变PLLA浓度、(PLLA/THF):甘油比值、溶剂种类以及淬火温度等条件研究所得多孔微球结构与形貌.结果表明,PLLA的质量分数为2% ~5%、m(PLLA/THF):m(甘油)=1:3、-20℃和-196℃淬火均能得到形状规整的PLLA多孔微球.多孔微球孔隙率和比表面积最高可达95.44%和32.53m2/g.PLLA多孔微球对牛血清蛋白的药载量为0.355 mg/mg,30 h内释放率达到59.8%,是一种非常良好的药物缓释载体.","authors":[{"authorName":"胡家朋","id":"e376e700-4367-45d0-a2df-4ff46598403e","originalAuthorName":"胡家朋"},{"authorName":"刘来","id":"b9daac69-125f-4d22-bf72-f8a02402d33a","originalAuthorName":"刘瑞来"},{"authorName":"","id":"182455a7-11dd-4b34-9e6d-231b4877bea5","originalAuthorName":"饶瑞晔"},{"authorName":"赵瑨云","id":"bcc6a622-445c-4d1f-b89a-c1c9042522c5","originalAuthorName":"赵瑨云"},{"authorName":"吴代赦","id":"4d0429ac-0af9-42b5-8158-870879474cac","originalAuthorName":"吴代赦"}],"doi":"10.16865/j.cnki.1000-7555.2016.05.028","fpage":"144","id":"6d8463ee-92fd-421a-aae1-f9e3a8f25505","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1c25938c-6d99-48ad-af23-ccbcf8909957","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"a616ed25-9683-46f5-85f2-09ba52f25c50","keyword":"热致相分离","originalKeyword":"热致相分离"},{"id":"4f6ca4a6-e1cf-44fd-8d9c-a92b946309e9","keyword":"多孔微球","originalKeyword":"多孔微球"},{"id":"7f41647d-b390-4e0d-b123-528b89d3b4da","keyword":"药物缓释","originalKeyword":"药物缓释"}],"language":"zh","publisherId":"gfzclkxygc201605028","title":"聚乳酸多孔微球的制备及释药性能","volume":"32","year":"2016"},{"abstractinfo":"将具有温度响应的聚N-异丙基丙烯酰胺( PNIPAm)接枝到电纺纤维素纳米纤维膜上,制备温度响应型纤维素接枝聚N-异丙基丙烯酰胺(PNIPAm-g-Cell)纳米纤维水凝胶。研究接枝单体(N)与纤维素(c)的质量比、反应温度、反应时间和引发剂浓度对产物接枝率、溶胀性和形貌的影响。结果表明,最佳聚合反应条件为m( N)∶m( c)=15∶1、反应温度40℃、反应时间3 h、引发剂浓度为10 mmol/L,得到PNIPAm-g-Cell接枝率和溶胀率分别为35%和31%。与PNIPAm相比,PNIPAm-g-Cell水凝胶的低临界相转变温度(LCST)显著升高,说明亲水性纤维素的引入改变了体系的亲疏水平衡。去溶胀动力学测试表明,0.5 min内接枝率为25%和35%的水凝胶保水率分别降低至93%和61%。说明接枝率越高PNIPAm-g-Cell水凝胶对温度的响应速度越快,对温度越敏感。","authors":[{"authorName":"陈培珍","id":"17b86bac-7500-403f-b56f-c1a8f05bc6ee","originalAuthorName":"陈培珍"},{"authorName":"刘来","id":"9f8b9a71-ba40-4081-84ec-ce3002d99ec9","originalAuthorName":"刘瑞来"},{"authorName":"","id":"cca7211d-2072-4892-954e-b40f8b7c320a","originalAuthorName":"饶瑞晔"}],"doi":"10.11944/j.issn.1000-0518.2016.12.160216","fpage":"1389","id":"f900e423-564f-4be4-b54b-9d0ea6615c4d","issue":"12","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"6428bca8-6e7f-4517-8f1b-70b87ef62adc","keyword":"纤维素","originalKeyword":"纤维素"},{"id":"a51342ed-611c-46f9-ad81-556798870f51","keyword":"聚N-异丙基丙烯酰胺","originalKeyword":"聚N-异丙基丙烯酰胺"},{"id":"b00b2e99-f7fe-4cca-9f9a-14fa8a44930b","keyword":"接枝","originalKeyword":"接枝"},{"id":"7ea55aaa-ac03-4d3a-ad72-d40038761825","keyword":"温度响应","originalKeyword":"温度响应"},{"id":"f8c960b1-3aa5-4673-a28f-1d9f5c12899f","keyword":"水凝胶","originalKeyword":"水凝胶"}],"language":"zh","publisherId":"yyhx201612006","title":"纤维素纳米纤维接枝聚(N-异丙基丙烯酰胺)水凝胶的制备与表征","volume":"33","year":"2016"},{"abstractinfo":"本研究采用静电喷雾法,以壳聚糖为基质材料,康普丁为模型药物制备微球.实验中采用AcOH/H2O和AcOH/H2O/EtOH两种溶剂,分析了微球形貌和粒径分布的影响因素,并且对CS-CA4微球的缓释性能进行了测定.结果表明,壳聚糖浓度、溶剂配比及乙醇和康普丁的加入会使壳聚糖微球呈球状、中间塌陷的类球状、棒状等不同形貌,微球粒径存在较大差异;通过AcOH/H2O/EtOH复合溶剂将疏水性药物康普丁载入壳聚糖微球,制备出的壳聚糖/康普丁载药微球分散性好,粒径分布均匀,平均粒径仅为0.27μm;使用戊二醛蒸汽交联48h的微球缓释效果明显.","authors":[{"authorName":"马骊娜","id":"1199ac48-a9e3-4a3e-bb00-419a65ff9d7c","originalAuthorName":"马骊娜"},{"authorName":"方大为","id":"75d9368e-192b-4a88-9bec-9695b9fa8044","originalAuthorName":"方大为"},{"authorName":"王克敏","id":"c738f1c1-d104-410d-9f54-55b3dca5dc2e","originalAuthorName":"王克敏"},{"authorName":"聂俊","id":"a11a1f53-3fd7-45b4-9dec-4aff409c0f7b","originalAuthorName":"聂俊"},{"authorName":"马贵平","id":"ccd2cd48-646b-4ffd-95c6-9d59f1efb92a","originalAuthorName":"马贵平"}],"doi":"10.14136/j.cnki.issn 1673-2812.2015.06.023","fpage":"889","id":"e2dd295a-8366-4fe2-816d-1bd9aea9ed57","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"c0915753-d339-4bb7-84b4-fb27eec6936d","keyword":"静电喷雾","originalKeyword":"静电喷雾"},{"id":"84fb1809-9c50-47b3-b2b4-73df58a6cf63","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"242c9cf4-d5d8-4798-86a4-712f75491661","keyword":"康普丁","originalKeyword":"康普瑞丁"},{"id":"7bcabc05-f355-4742-9b0c-d0599dbafa0a","keyword":"微球","originalKeyword":"微球"}],"language":"zh","publisherId":"clkxygc201506023","title":"静电喷雾法制备壳聚糖/康普丁载药微球","volume":"33","year":"2015"},{"abstractinfo":"在模拟人体生理条件下(pH=7.40),采用荧光光谱法研究双醋因与人血清白蛋白的相互作用.采用2种方法计算不同温度下其结合常数K<,A>、结合位点数n,同时对2种计算方法进行了比较;并根据热力学参数确定了双醋因与人血清白蛋白之间的作用力类型.根据Forster非辐射能量转移原理,确定了双醋因与人血清白蛋白相互结合时供能体-受能体间的作用距离和能量转移效率,并用同步荧光光谱研究了双醋因对人血清白蛋白构象的影响.结果表明,双醋因与人血清白蛋白之间主要是以静态猝灭为主;结合距离r=2.88 nm,能量转移效率E=0.273 8,二者主要凭借氢键和范德华力进行结合.","authors":[{"authorName":"吕茜茜","id":"f12bfcef-2194-44f2-af18-bffaf338c1f1","originalAuthorName":"吕茜茜"},{"authorName":"高苏亚","id":"a30644da-e49a-4d36-afc7-e716115ce091","originalAuthorName":"高苏亚"},{"authorName":"夏冬辉","id":"d73ff043-6fa7-4f8d-a484-08e90b5cb087","originalAuthorName":"夏冬辉"},{"authorName":"李华","id":"64609acd-7353-4cf0-9b35-d68a7b42f516","originalAuthorName":"李华"}],"doi":"10.3724/SP.J.1095.2011.00497","fpage":"836","id":"c91df298-e5b8-4f97-a2e9-feb360f7f935","issue":"7","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"28c96fc8-c4c6-4273-a94a-5ba9464e0eba","keyword":"双醋因","originalKeyword":"双醋瑞因"},{"id":"f2d384ae-ff9a-425a-840a-8f406b7729eb","keyword":"人血清白蛋白","originalKeyword":"人血清白蛋白"},{"id":"316e2743-ed10-4b2a-8872-69ab0668a364","keyword":"荧光光谱法","originalKeyword":"荧光光谱法"},{"id":"5a82aeaa-fe8e-49cc-972a-8fca5dd7381e","keyword":"相互作用","originalKeyword":"相互作用"}],"language":"zh","publisherId":"yyhx201107018","title":"荧光光谱法研究双醋因与人血清白蛋白的相互作用","volume":"28","year":"2011"},{"abstractinfo":"以具有22个不同种类手性中心的新型大环抗生素伊霉素为手性选择器,基于环氧基团高反应活性的特征,将伊霉素用一步法键合到甲基丙烯酸酯整体柱表面制备伊霉素键合手性毛细管整体柱.通过对制备条件进行优化,证实该制备方法可在较宽的pH范围(6.0~9.0)内进行,方法简单易行,反应条件温和.应用制备的手性毛细管整体柱在毛细管电色谱模式下,对5种手性氨基酸对映体和手性药物罗格列酮对映体进行拆分,均得到了基线分离,说明伊霉素手性固定相具有较强的手性拆分能力.在优化的色谱条件下,6种对映体的分析时间均小于4 min,分析速度快.通过对有机调节剂、缓冲液pH值和缓冲盐浓度等分离条件进行系统考察,初步探讨了该手性毛细管整体柱对不同溶质的手性识别机理.","authors":[{"authorName":"雷雯","id":"f3112f13-31b3-48d4-8a3d-24941a9b5feb","originalAuthorName":"雷雯"},{"authorName":"张凌怡","id":"e0071825-4b94-4a3f-ba04-ba62050f2187","originalAuthorName":"张凌怡"},{"authorName":"万莉","id":"75b5c03d-49e1-4f6e-a59e-e4904e4e2b5f","originalAuthorName":"万莉"},{"authorName":"朱亚仙","id":"4f006e92-817c-4597-842f-7f801bd9dcb9","originalAuthorName":"朱亚仙"},{"authorName":"覃飒飒","id":"954f8ad8-ce48-40e5-bda6-e494c7fc375b","originalAuthorName":"覃飒飒"},{"authorName":"张维冰","id":"62dc267b-d4f0-467d-81ef-ecdbb1d66fda","originalAuthorName":"张维冰"}],"doi":"10.3724/SP.J.1123.2010.00977","fpage":"977","id":"8b0818de-0a05-43be-89a8-9aae5bf1adf3","issue":"10","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"ebde9186-14bb-48bb-a7b9-c54bb9bbfd44","keyword":"伊霉素","originalKeyword":"伊瑞霉素"},{"id":"1f065bbb-c191-4889-88ec-8826a836e5d8","keyword":"大环抗生素","originalKeyword":"大环抗生素"},{"id":"f6bb8cb7-1144-4376-85ef-a81fdb8986f4","keyword":"手性整体固定相","originalKeyword":"手性整体固定相"},{"id":"303d37f9-7cd6-4218-8d88-b02ce6b5b5d8","keyword":"毛细管电色谱","originalKeyword":"毛细管电色谱"},{"id":"b90b4039-836a-4782-8b57-34e66b7c89e1","keyword":"对映体","originalKeyword":"对映体"}],"language":"zh","publisherId":"sp201010013","title":"伊霉素键合手性毛细管整体柱的制备与对映体分离","volume":"28","year":"2010"},{"abstractinfo":"","authors":[{"authorName":"王泽汉","id":"90995030-0492-4dfc-ae34-a85c847939ff","originalAuthorName":"王泽汉"},{"authorName":"刘云清","id":"e256a612-0d3b-4d33-b7ab-9915f0ddb2a6","originalAuthorName":"刘云清"}],"doi":"10.3969/j.issn.1000-6826.2015.03.01","fpage":"1","id":"fc012ed0-929e-4ae2-b19f-83ebee168ade","issue":"3","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"3eea2cc1-8c75-4b8c-bc6d-059965816455","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj201503001","title":"何安:熔铁冶金,铸造钢铁脊梁","volume":"","year":"2015"},{"abstractinfo":"","authors":[],"doi":"","fpage":"25","id":"247b3723-42af-43e5-9140-adc6cfead04c","issue":"4","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"7f7fee77-baa6-4253-8a08-5c0427c22d76","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgyj200204012","title":"殷钰副理事长当选日本钢铁学会名誉会员","volume":"","year":"2002"}],"totalpage":5,"totalrecord":43}