{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用Voronoi随机算法建立微尺度W骨架多孔模型,基于Young-Laplace修正后的Navier-Stokes动量方程,应用有限体积法分析制备CuW合金的渗流过程.模拟结果表明:Cu-W间的润湿性越好,则铜液流股中心流速越大,但铜液在骨架壁面的黏附越强,从而有利于铜液与壁面接触而产生机械结合.此外,渗流通道中由于孔径不均匀引起的扩孔与缩孔转变导致铜液在孔隙中形成漩涡, 促使CuW合金中产生气孔,从而降低铜液的充填率.","authors":[{"authorName":"白艳霞","id":"cfdec549-d524-4ff8-b6c4-b53bb29fc4a1","originalAuthorName":"白艳霞"},{"authorName":"梁淑华","id":"c2fd7ef7-a93d-4492-99e2-d2cf6327f773","originalAuthorName":"梁淑华"}],"doi":"","fpage":"730","id":"188e7304-42b3-4000-949f-9484d5e2774f","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b1ef6fe0-fcac-4a33-918c-404673f5e69a","keyword":"CuW合金","originalKeyword":"CuW合金"},{"id":"6f2d2774-af5d-41bc-a250-7b8ff09d54ee","keyword":"W骨架","originalKeyword":"W骨架"},{"id":"af358cde-e0a3-4863-b7b0-c07c3f392620","keyword":"渗流","originalKeyword":"渗流"},{"id":"742d1a80-8f86-413c-a154-7a91bbd04197","keyword":"润湿性","originalKeyword":"润湿性"}],"language":"zh","publisherId":"xyjsclygc201304014","title":"润湿性及孔径均匀性对铜液在多孔W骨架中渗流过程的影响","volume":"42","year":"2013"},{"abstractinfo":"利用分离式Hopkinson压杆装置(SHPB)和SEM、XRD等测试方法研究了W骨架/Zr基非晶合金复合材料的动态力学性能及断裂模式.结果表明,复合材料具有较高的动态压缩强度,在采用0.8 MPa打击压力时动态压缩强度接近1 900MPa.复合材料的断裂包括沿W/W界面、W/非晶界面开裂以及W颗粒解理几种断裂模式,W骨架的特性和材料的交叉网络结构提升了整体塑性.","authors":[{"authorName":"兰山","id":"3ac4ff2b-8939-410d-86f3-2bda6dc82851","originalAuthorName":"兰山"},{"authorName":"王鲁","id":"8f6fd62a-999d-4b38-ad3e-351bf9a4f505","originalAuthorName":"王鲁"},{"authorName":"程焕武","id":"4467562b-ee8a-4db6-a93a-8669447a71c3","originalAuthorName":"程焕武"},{"authorName":"才鸿年","id":"432a891d-9d49-49b1-9381-25c0c651edac","originalAuthorName":"才鸿年"},{"authorName":"张海峰","id":"cfb89db3-d245-45a8-b9ca-3b55536da817","originalAuthorName":"张海峰"},{"authorName":"王爱民","id":"341e4f10-cc28-4217-a47c-0082000a21e3","originalAuthorName":"王爱民"}],"doi":"10.3969/j.issn.1004-244X.2006.03.003","fpage":"7","id":"3b224d29-aae0-4c9f-9c60-6e842beb10af","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"7a827b7e-9834-4a9d-abf9-2f0c506dfe89","keyword":"W骨架/Zr基非晶合金复合材料","originalKeyword":"W骨架/Zr基非晶合金复合材料"},{"id":"6af9b144-c3c1-4293-bc2f-7ff5a3e43beb","keyword":"网络交叉复合材料","originalKeyword":"网络交叉复合材料"},{"id":"eaea78f4-af1c-4148-826d-c4007186f910","keyword":"动态性能","originalKeyword":"动态性能"},{"id":"fedd6ab5-e47a-41b7-8308-2fbfbbe620c5","keyword":"动态断裂","originalKeyword":"动态断裂"},{"id":"3b7274e8-1c32-4457-9fe0-eafdb3107a78","keyword":"脉状花样","originalKeyword":"脉状花样"}],"language":"zh","publisherId":"bqclkxygc200603003","title":"W骨架/Zr基非晶合金复合材料动态力学特性研究","volume":"29","year":"2006"},{"abstractinfo":"根据雷达天线骨架所处的腐蚀环境,设计了相应的防腐配套方案以及表面处理、电弧喷锌和喷底、面漆等涂装工艺技术参数。认为雷达在使用过程中处于C5甚至C5-M的严重腐蚀大气环境的概率较高,应以环氧或聚氨酯漆为电弧喷锌层的封闭涂层(膜厚25~30 mm,不计入规定的膜厚),并适当增加锌层上中层漆和面漆的膜厚,并推广应用抛丸除锈法和无气喷涂法以提高涂装质量,延长雷达的使用寿命。","authors":[{"authorName":"李敏风","id":"ea46fc4d-42e7-442f-9c36-b7ab3851c48e","originalAuthorName":"李敏风"}],"doi":"","fpage":"21","id":"d0475c31-7347-48b7-bfcb-9ba7b13e4910","issue":"2","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"8a680566-7da4-49e7-a135-af51444f45b9","keyword":"雷达天线骨架","originalKeyword":"雷达天线骨架"},{"id":"2f5197d4-4bea-4457-8706-afef6f5696d0","keyword":"防腐","originalKeyword":"防腐"},{"id":"c4cbc62d-995a-443e-ba86-500b280ad443","keyword":"抛丸","originalKeyword":"抛丸"},{"id":"bf63f781-9326-4f5a-8acc-7dcd345ffc51","keyword":"电弧喷锌","originalKeyword":"电弧喷锌"},{"id":"d1adaae1-a562-4b8a-affc-e15f70e76913","keyword":"无气喷涂","originalKeyword":"无气喷涂"}],"language":"zh","publisherId":"ddyts201502005","title":"雷达天线骨架涂装工艺","volume":"","year":"2015"},{"abstractinfo":"从骨架增强复合材料的微观结构特点出发,揭示出在相同结构参数时骨架增强复合材料相比颗粒增强复合材料具有更高的增强体体积分数f和更多的界面A;并从理论上证明在f相同时,骨架增强复合材料的强度为颗粒增强复合材料的强度和单纯骨架材料强度的和.","authors":[{"authorName":"林均品","id":"e822d320-47c3-42a7-8253-f209830a038d","originalAuthorName":"林均品"},{"authorName":"张勇","id":"36c2266b-3c0f-4fd4-9e63-2e5445e5f791","originalAuthorName":"张勇"},{"authorName":"陈国良","id":"6e386a0e-8568-4b37-b5d4-9ba255692441","originalAuthorName":"陈国良"}],"doi":"10.3969/j.issn.1001-4381.2000.06.005","fpage":"20","id":"bd914ea8-3143-4488-9f8a-b24a827f93be","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"2cc92b48-8f96-4663-85ea-540f8a200761","keyword":"骨架","originalKeyword":"骨架"},{"id":"ca9eb68a-5d80-4bb6-bdb5-24f4297e855b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"51df1ac2-d6f7-46f6-97ae-2fabcdef48df","keyword":"增强体体积分数","originalKeyword":"增强体体积分数"}],"language":"zh","publisherId":"clgc200006005","title":"骨架增强复合材料的微观结构和性能","volume":"","year":"2000"},{"abstractinfo":"为了提高骨架提取的准确性和连通性,提出了一种基于向量内积的新型骨架提取方法。对二值图像进行欧氏距离变换,获得了由内部像素点指向边界点的边界向量,通过比较内部像素点8-邻域范围内对应边界向量内积值符号在4个方向上的变化情况确定了边界向量方向发生重大变化的次数,并据此选取候选骨架点;采用基于回归分析的方法确定延伸方向,并完成连接操作生成完整的骨架线。实验结果表明,该算法能够保证骨架的连通性和完整性,且骨架定位准确,平均正确率达到92.27%,同时可以克服边界扰动,是一种有效的骨架提取算法。","authors":[{"authorName":"胡斯淼","id":"a43838ee-1ac5-493c-bbbe-19736291b0e0","originalAuthorName":"胡斯淼"},{"authorName":"任洪娥","id":"8f9602ba-ffd1-45d5-8624-6e40b106c58e","originalAuthorName":"任洪娥"},{"authorName":"于鸣","id":"78918497-1e95-477b-9e6d-e4ec42f35689","originalAuthorName":"于鸣"},{"authorName":"姜士辉","id":"10b3b431-45fc-4d83-a9e7-150de6f20e03","originalAuthorName":"姜士辉"},{"authorName":"齐红","id":"f4288bf9-78d8-4f72-9842-d0661518c360","originalAuthorName":"齐红"}],"doi":"10.3788/YJYXS20153005.0844","fpage":"844","id":"2ccb961a-7a4a-4cbe-a82b-4dd4b82c4b54","issue":"5","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"29b7f4c1-e39a-45e4-b6c5-81103bd77354","keyword":"骨架","originalKeyword":"骨架"},{"id":"6fa96a6e-3dbc-4d08-beef-4432a943f80d","keyword":"距离变换","originalKeyword":"距离变换"},{"id":"57ca7a79-eab3-459d-947d-97d307a305d6","keyword":"向量内积","originalKeyword":"向量内积"}],"language":"zh","publisherId":"yjyxs201505017","title":"基于向量内积的新型骨架提取方法","volume":"","year":"2015"},{"abstractinfo":"为了研究砂粒式超薄沥青混凝土级配的骨架特性,采用逐级填充试验,以粗集料间隙率(VCA)、加州承载比(CBR)和最大贯入荷载(MPL)为指标,分析了不同粗集料组合方式对砂粒式超薄沥青混凝土骨架密实性以及骨架强度的影响,探讨了CBR、MPL用于评价干混集料骨架强度的适应性,并结合均匀设计和灰关联熵分析法确定了影响粗集料骨架特性的关键筛孔,进而推荐了各档粗集料含量的范围.结果表明,最大贯入荷载能很好地反映集料抵抗外界荷载的能力,适合作为砂粒式超薄沥青混凝土骨架强度的评价指标;2.36 mm、1.18 mm筛孔上集料含量对VCA和MPL的影响显著;三档粗集料含量的推荐范围分别为8.3%~16.3%;78.6%~82.6%;5.1%~9.1%.","authors":[{"authorName":"祝斯月","id":"29fbc316-2d3c-41e3-9f3d-a51a3a556bc6","originalAuthorName":"祝斯月"},{"authorName":"陈拴发","id":"115fcd5b-cd29-4c83-b6dc-2ffe648b1c19","originalAuthorName":"陈拴发"},{"authorName":"豆怀兵","id":"b126aa78-2fcf-44df-858e-361254f06576","originalAuthorName":"豆怀兵"},{"authorName":"李鑫","id":"fd474f48-5951-42b9-89f4-2ae2488d3b49","originalAuthorName":"李鑫"},{"authorName":"秦先涛","id":"7235e340-57df-4007-90ff-de92d9168e3f","originalAuthorName":"秦先涛"}],"doi":"10.11896/j.issn.1005-023X.2015.02.029","fpage":"133","id":"c748de13-4712-4034-8ba8-8a9ddbae6152","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a6129943-e5de-49f9-a946-99c7720c0061","keyword":"道路工程","originalKeyword":"道路工程"},{"id":"475a9f3d-f37b-4219-ba36-4d49a03fa8a7","keyword":"砂粒式超薄沥青混凝土","originalKeyword":"砂粒式超薄沥青混凝土"},{"id":"b4adefc0-4dbc-4eb1-9c2e-23a90bdf5979","keyword":"逐级填充试验","originalKeyword":"逐级填充试验"},{"id":"88e8a2df-7ea7-4af1-9e8b-e8c2db4cdafe","keyword":"均匀配方设计","originalKeyword":"均匀配方设计"},{"id":"be5cacff-888f-404b-ac9a-8bc1abf7c3e9","keyword":"灰关联熵","originalKeyword":"灰关联熵"},{"id":"459e48d1-493b-4a74-9c21-cd2f829cbcf0","keyword":"最大贯入荷载","originalKeyword":"最大贯入荷载"}],"language":"zh","publisherId":"cldb201502029","title":"砂粒式超薄沥青混凝土粗集料骨架特性","volume":"29","year":"2015"},{"abstractinfo":"本文采用基于特征值分析的骨架机理简化方法,对于航空煤油替代燃料正癸烷(118组分527反应)和正丙基环己烷(106组分382反应)氧化反应机理进行了简化,分别得到68组分302反应和67组分250反应骨架机理.采用骨架机理进行了着火延迟和火焰传播速度动力学模拟,并与详细机理计算结果进行了对比,结果表明,骨架机理具有较高的计算精度,该方法对于高碳氢燃料的详细机理简化具有较好的效果.","authors":[{"authorName":"姚通","id":"28246a03-5c5e-49dd-a527-99d0fdbf7c22","originalAuthorName":"姚通"},{"authorName":"文斐","id":"ccf80867-334b-4ca5-a6da-aa6aa4720578","originalAuthorName":"文斐"},{"authorName":"钟北京","id":"9ccf27e9-5515-42ad-bc0b-3fc57327412a","originalAuthorName":"钟北京"}],"doi":"","fpage":"1170","id":"1a2b0849-9688-4117-8079-5b0759249587","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"72aeef3d-4547-4634-825a-866a36543d1e","keyword":"特征值分析","originalKeyword":"特征值分析"},{"id":"00886b9e-68ed-4c0d-b829-ec218e5a6564","keyword":"正癸烷","originalKeyword":"正癸烷"},{"id":"f513ad02-dd4a-4379-b5a6-ad424fa11072","keyword":"正丙基环己烷","originalKeyword":"正丙基环己烷"},{"id":"72997b69-65fa-4253-84d4-2aba1f53cc8c","keyword":"骨架机理","originalKeyword":"骨架机理"},{"id":"177ace61-4120-41bc-b06a-5012a815258e","keyword":"动力学模拟","originalKeyword":"动力学模拟"}],"language":"zh","publisherId":"gcrwlxb201306040","title":"煤油替代燃料燃烧反应骨架机理简化","volume":"34","year":"2013"},{"abstractinfo":"通过把硅铝分子筛的骨架脱铝过程简化为分子筛骨架中杂原子的扩散和空位的形成及迁移过程, 使用费克第二定律建立扩散方程, 得到任意时刻铝原子的浓度关于位置的函数, 并讨论了影响脱铝的几个重要因素. 用XPS、红外光谱和27Al--NMR测定在一定条件下处理后的氢型丝光沸石和ZSM--5的骨架硅铝比的变化, 并与由所建立的数学模型计算出的骨架硅铝比比较, 验证了公式的准确性.","authors":[{"authorName":"马广伟谢在库","id":"76c9a355-ab5f-43d8-879d-6b51bd1f3c99","originalAuthorName":"马广伟谢在库"}],"categoryName":"|","doi":"","fpage":"205","id":"252f5cf1-b452-4623-a1e0-964aa20aa773","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"600f284f-1a83-4d2c-abd5-95eb510359d3","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"373fe1bd-ce5a-4ea9-9be6-9975341a5565","keyword":"molecule sieves dealuminum","originalKeyword":"molecule sieves dealuminum"},{"id":"fc7d5084-da96-4656-a756-7b7b08063c71","keyword":"diffusion","originalKeyword":"diffusion"},{"id":"e394d153-f3cf-4c38-afe3-03cf7f6a38af","keyword":"the second laws of Filker","originalKeyword":"the second laws of Filker"},{"id":"c72360d1-a6b7-43c7-8e02-20fe7b09e530","keyword":" balanced density of the vacancy","originalKeyword":" balanced density of the vacancy"},{"id":"cdd3d98d-fabc-47e3-ade3-a113ee20ff81","keyword":"ration of silicon and aluminum on skeleton","originalKeyword":"ration of silicon and aluminum on skeleton"}],"language":"zh","publisherId":"1005-3093_2009_2_12","title":"硅铝分子筛骨架脱铝模型","volume":"23","year":"2009"},{"abstractinfo":"通过把硅铝分子筛的骨架脱铝过程简化为分子筛骨架中杂原子的扩散和空位的形成及迁移过程,使用费克第二定律建立扩散方程,得到任意时刻铝原子的浓度关于位置的函数,并讨论了影响脱铝的几个重要因素.用XPS、红外光谱和27Al-NMR测定在一定条件下处理后的氢型丝光沸石和ZSM-5的骨架硅铝比的变化,并与由所建立的数学模型计算出的骨架硅铝比比较,验证了公式的准确性.","authors":[{"authorName":"马广伟","id":"eeac8564-d115-46d7-a74e-4acf3b370008","originalAuthorName":"马广伟"},{"authorName":"谢在库","id":"82605248-582e-4ca8-9b45-ac6d8f40c7ed","originalAuthorName":"谢在库"}],"doi":"10.3321/j.issn:1005-3093.2009.02.018","fpage":"205","id":"88af1aeb-1726-4cb4-9eb3-335ea6f44116","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"4e8e971e-5351-40c3-ae7a-e25619614b99","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"38ed5d9b-ad2d-4aa9-89fd-d886abd56814","keyword":"分子筛骨架脱铝","originalKeyword":"分子筛骨架脱铝"},{"id":"c33b3cd4-bd2f-49c7-a2d8-c642f16fec42","keyword":"扩散","originalKeyword":"扩散"},{"id":"57fb390a-cbad-47b7-8e20-a5967f376b4c","keyword":"费克第二定律","originalKeyword":"费克第二定律"},{"id":"3d479c3d-4800-4a9f-bc8d-94c2f632dda7","keyword":"空位平衡浓度","originalKeyword":"空位平衡浓度"},{"id":"9e06f9c5-345b-4f95-b035-9863a021001d","keyword":"骨架硅铝比","originalKeyword":"骨架硅铝比"}],"language":"zh","publisherId":"clyjxb200902018","title":"硅铝分子筛骨架脱铝模型","volume":"23","year":"2009"},{"abstractinfo":"为实现PAN纤维在低温碳化过程的结构调控,利用核磁共振碳谱(13C-NMR)研究了PAN预氧化纤维在500-800℃的低温碳化过程中骨架结构的演变.结果表明:在低温碳化过程中,随着碳化温度的升高,预氧化纤维骨架结构中饱和的CH、CH2和C=0结构逐渐消失,共轭-HC=C<和>C=N-逐渐减小,共轭>C=C<逐渐增加,纤维形成多层多环芳香结构;多环芳香结构平均层数与碳化温度密切相关,经500、600、700、800℃碳化处理后,纤维骨架结构中多环芳香结构平均层数分别达到1.29、2.17、2.81和3.42;在较低碳化温度(500℃),多环芳香结构平均层数随碳化处理时间延长增加不明显,在较高碳化温度(700℃),多环芳香结构平均层数随碳化处理时间呈线性增加.","authors":[{"authorName":"王统帅","id":"0bc11ac9-0007-4894-bf5b-ce278b417d84","originalAuthorName":"王统帅"},{"authorName":"童元建","id":"a80d6466-5428-4b16-a98b-5fa155c3fa76","originalAuthorName":"童元建"},{"authorName":"罗莎","id":"bb4f9b2b-4f3e-4499-96ae-8caf896f823f","originalAuthorName":"罗莎"},{"authorName":"昌志龙","id":"ca4f3bf9-94b0-4b79-b7ae-c7504ccf190f","originalAuthorName":"昌志龙"},{"authorName":"徐樑华","id":"7c4d269b-9e8c-420d-b975-15bca8aa5827","originalAuthorName":"徐樑华"}],"doi":"","fpage":"133","id":"06002991-818f-4409-a89f-16be59e33d01","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"c2a36f03-de30-46b6-8a9c-8c916e81e004","keyword":"聚丙烯腈基碳纤维","originalKeyword":"聚丙烯腈基碳纤维"},{"id":"ec6e4142-1a01-4df9-87d3-f1646c06ed85","keyword":"固体核磁碳谱","originalKeyword":"固体核磁碳谱"},{"id":"8ddff4e4-2562-4fb6-be59-cee6a402f96c","keyword":"骨架结构","originalKeyword":"骨架结构"},{"id":"3b5fb3d1-52dd-4b80-b5e1-daaf182b32f8","keyword":"多环芳香结构","originalKeyword":"多环芳香结构"}],"language":"zh","publisherId":"clkxygy201106024","title":"低温碳化过程PAN氧化纤维骨架结构转变","volume":"19","year":"2011"}],"totalpage":749,"totalrecord":7483}