{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了硬质多元氮化物薄膜的研究进展,主要是从硬质薄膜的发展历程上,介绍了每一代薄膜的产生及其特点.同时介绍了硬质多元氮化物薄膜的结构及其性能特点.着重从如何提高薄膜硬度和韧性方面进行了详细介绍,对几种硬化机制进行了论述,包括晶粒细化、晶界强化、固溶强化及离子轰击/应力硬化.同时还介绍了提高薄膜韧性的方法,包括引入一个韧性相(包括金属相)、利用相变韧化、引入压应力韧化、优化涂层结构等.同时还指出,硬度和韧性都是硬质薄膜获得实际应用的重要指标.单纯追求高硬度或高韧性是不可取的,因为硬质薄膜一般脆性较大,而韧性好的薄膜却缺乏足够的硬度.从工程应用的角度来说,既要得到较高的硬度,而且韧性不能损失太多.最后指出,今后的发展方向要将硬化和韧性的研究集中在纳米尺度上,即如何在纳米尺度上进一步理解薄膜的变形.","authors":[{"authorName":"赵彦辉","id":"17f9e0b3-c78c-4ff7-a514-c10dbecf589f","originalAuthorName":"赵彦辉"},{"authorName":"徐丽","id":"fafc6743-0391-47f2-800b-cb690749bba1","originalAuthorName":"徐丽"},{"authorName":"于海涛","id":"8743e721-73d5-43e0-ac51-0aed6080de8a","originalAuthorName":"于海涛"},{"authorName":"赵升升","id":"6d8f4ead-892f-4a42-b05a-fdd7d69ec386","originalAuthorName":"赵升升"},{"authorName":"刘占奇","id":"91de2c29-a18c-432d-80de-4856b8127170","originalAuthorName":"刘占奇"},{"authorName":"于宝海","id":"9cc60a95-c1ab-4dd5-8027-340530a8b264","originalAuthorName":"于宝海"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.06.016","fpage":"102","id":"cc00b4e7-1c3a-4c2d-9204-c2e5db370d58","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"6d6f5a97-e661-4c49-a7e0-c2eebfebb5c6","keyword":"硬质多元氮化物薄膜","originalKeyword":"硬质多元氮化物薄膜"},{"id":"a211569f-3c94-41db-a184-9e7e18e77d4f","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"c2d28cef-fab2-454a-a111-53abec1f3079","keyword":"硬度","originalKeyword":"硬度"},{"id":"8cd7c0f2-0900-411c-adbb-c19a61937cd7","keyword":"韧性","originalKeyword":"韧性"},{"id":"14601e6b-0dc6-4a1a-98f3-1ea694da4232","keyword":"强韧化机制","originalKeyword":"强韧化机制"}],"language":"zh","publisherId":"bmjs201706016","title":"硬质多元氮化物薄膜研究进展","volume":"46","year":"2017"},{"abstractinfo":"采用真空阴极电弧沉积技术,在NiTi记忆合金表面沉积了TiAlBN和TiAlCrFeSiBN多元膜和TiN薄膜,研究了薄膜成份及沉积工艺对NiTi合金性能和组织的影响.结果表明,在NiTi合金表面沉积TiAlBN和TiAlCrFeSiBN多元膜和TiN薄膜均可降低合金在Hank溶液中的Ni溶出速率,其中多元膜的Ni溶出速率最小;提高偏压对沉积了TiAlBN多元膜的NiTi合金的Ni溶出速率无明显影响,但使沉积了TiAlCrFeSiBN膜的NiTi合金的Ni溶出速率降低.在TiAlBN和TiAlCrFeSiBN多元膜表面存在较多细小的钛滴和孔隙,钛滴与薄膜基体之间的融合良好;在TiN薄膜表面存在一些大钛滴和孔隙,钛滴与薄膜基体之间的融合不好.镀膜后,NiTi基体的加热相变点移向低温区,其幅度与薄膜成份及沉积工艺有关,提高偏压使沉积了两种多元膜的NiTi基体的相变点移动幅度增大,但却使沉积了TiN膜的NiTi基体的相变点的移动幅度减小.镀膜过程均使NiTi中的M体尺寸增大.","authors":[{"authorName":"谢致薇","id":"f2551b17-a344-4a42-846f-8be0dd383a7b","originalAuthorName":"谢致薇"},{"authorName":"白晓军","id":"0f47eeb3-ecdd-402c-aa8a-022ae122d78f","originalAuthorName":"白晓军"},{"authorName":"王国庆","id":"a53f7f5b-fada-4608-84d2-452a46df4f66","originalAuthorName":"王国庆"},{"authorName":"杨元政","id":"cec6a95d-0749-4752-9aa6-8d1efe660967","originalAuthorName":"杨元政"},{"authorName":"廖志明","id":"48931d1c-1380-4771-870e-66c17301f884","originalAuthorName":"廖志明"},{"authorName":"匡同春","id":"916137f0-05c0-49ad-9316-03f1263ec915","originalAuthorName":"匡同春"},{"authorName":"成晓玲","id":"050ef8f9-cc23-4028-8e4c-37739d072fd5","originalAuthorName":"成晓玲"},{"authorName":"冉炜","id":"7f5b4273-07bb-469a-952f-a970e865783b","originalAuthorName":"冉炜"},{"authorName":"郭冰","id":"6d06c7a1-acae-4622-af48-70449cdeb302","originalAuthorName":"郭冰"},{"authorName":"舒大龙","id":"fa63b7eb-6c53-477d-b5e0-f80cf43428f9","originalAuthorName":"舒大龙"}],"doi":"","fpage":"905","id":"0f9e99d9-c20e-45e1-b091-0ef53616ecc2","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5acf315e-79f7-40f0-87d5-8a1b5d25da7e","keyword":"多元氮化物薄膜","originalKeyword":"多元氮化物薄膜"},{"id":"638f152d-ea61-4c7c-b083-b420a17c22e5","keyword":"NiTi形状记忆合金","originalKeyword":"NiTi形状记忆合金"},{"id":"e1d10e7b-610a-4ebb-b602-20dc8f014f67","keyword":"差示扫描量热法(DSC)","originalKeyword":"差示扫描量热法(DSC)"},{"id":"944c9a11-74b9-4300-9957-aa6116731ff4","keyword":"Ni溶出","originalKeyword":"Ni溶出"}],"language":"zh","publisherId":"gncl200606018","title":"多元氮化物薄膜及其沉积工艺对NiTi记忆合金性能和组织的影响","volume":"37","year":"2006"},{"abstractinfo":"
采用增强磁过滤电弧离子镀技术在单晶Si基片上制备了3组不同过渡金属的氮化物薄膜MNx (M=Ti, Zr, Hf). 利用FESEM, GIXRD, XPS, Nano Indenter等方法对MNx薄膜的形貌、厚度、相结构、成分、元素的化学态、残余应力、弹性模量和硬度等进行了表征. 结果表明, 3组MNx薄膜均在较宽的成分范围内表现为fcc单相结构, 并且同组薄膜间的择优取向、厚度、晶粒尺寸和残余应力等均基本保持一致; 特别是3组薄膜的硬度和弹性模量均随N成分x的变化而变化, 并且都在x=0.82附近出现性能峰值. 分析表明, MNx薄膜与成分相关的性能增强, 其决定性因素不在于介观尺度的晶粒细化、择优取向及内应力等, 而是取决于原子尺度的化学键合及电子结构等因素.
","authors":[{"authorName":"韩克昌","id":"82155401-03d7-4b12-992b-f3b430d95d0c","originalAuthorName":"韩克昌"},{"authorName":"刘一奇","id":"78d91c49-f388-424c-89df-3151a18d3cfa","originalAuthorName":"刘一奇"},{"authorName":"林国强","id":"ed75489d-be58-4344-8d03-ce6ed7c9adf4","originalAuthorName":"林国强"},{"authorName":"董闯","id":"324ce8cd-6955-4684-a2c0-5918a8f019ea","originalAuthorName":"董闯"},{"authorName":"邰凯平","id":"129376a1-d402-48c4-bd02-f4e42a000e50","originalAuthorName":"邰凯平"},{"authorName":"姜辛","id":"2dfd6f62-21b9-44d0-8def-fb39b2a50ff6","originalAuthorName":"姜辛"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00078","fpage":"1601","id":"ab897f44-6f22-496d-813d-4700e188ab1f","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7ecc3544-87ad-46cc-abdd-eca6e97f981a","keyword":"过渡金属氮化物薄膜,","originalKeyword":"过渡金属氮化物薄膜,"},{"id":"1e2044d7-5a5e-4fdd-b506-97a0e4639208","keyword":"电弧离子镀,","originalKeyword":"电弧离子镀,"},{"id":"626ddf6a-7c99-45f3-87e2-67ac9d92b572","keyword":"成分,","originalKeyword":"成分,"},{"id":"e1a7956b-e48c-4858-b32c-6a8a487ca69e","keyword":"力学性能,","originalKeyword":"力学性能,"},{"id":"8cfbe95e-5977-4e8d-979e-6c127c8007a3","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"0412-1961-2017-12-1601","title":"宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*","volume":"52","year":"2016"},{"abstractinfo":"采用增强磁过滤电弧离子镀技术在单晶Si基片上制备了3组不同过渡金属的氮化物薄膜MNx(M=Ti,Zr,Hf).利用FESEM,GIXRD,XPS,Nano Indenter等方法对MNx薄膜的形貌、厚度、相结构、成分、元素的化学态、残余应力、弹性模量和硬度等进行了表征.结果表明,3组MNx薄膜均在较宽的成分范围内表现为fcc单相结构,并且同组薄膜间的择优取向、厚度、晶粒尺寸和残余应力等均基本保持一致;特别是3组薄膜的硬度和弹性模量均随N成分x的变化而变化,并且都在x=0.82附近出现性能峰值.分析表明,MNx薄膜与成分相关的性能增强,其决定性因素不在于介观尺度的晶粒细化、择优取向及内应力等,而是取决于原子尺度的化学键合及电子结构等因素.","authors":[{"authorName":"韩克昌","id":"de49ba25-1bcc-471a-bb72-165eaf400e8d","originalAuthorName":"韩克昌"},{"authorName":"刘一奇","id":"0345fb71-a848-4b36-8eff-779d3918242f","originalAuthorName":"刘一奇"},{"authorName":"林国强","id":"5f3a4f2b-5562-491f-a761-310ab53447f2","originalAuthorName":"林国强"},{"authorName":"董闯","id":"b8d13610-a73b-491e-866a-f0f5460d7a99","originalAuthorName":"董闯"},{"authorName":"邰凯平","id":"d968f7bd-5151-420d-8f50-01a2a86e302c","originalAuthorName":"邰凯平"},{"authorName":"姜辛","id":"07a31321-a39f-42f8-beac-770dd763c01b","originalAuthorName":"姜辛"}],"doi":"10.11900/0412.1961.2016.00078","fpage":"1601","id":"5228db4a-a460-4e2e-866b-5304f5375d07","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"40701096-7675-4f56-856d-150a97232784","keyword":"过渡金属氮化物薄膜","originalKeyword":"过渡金属氮化物薄膜"},{"id":"f355b7a9-8081-4c0c-bad5-45f8d6a749a0","keyword":"电弧离子镀","originalKeyword":"电弧离子镀"},{"id":"7e003ae4-577d-4a2f-99c8-557432221b07","keyword":"成分","originalKeyword":"成分"},{"id":"a460567a-22ad-490b-b5c5-088c9465e1f3","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"332437c4-5882-4cc3-9a4d-ca659658edc1","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"jsxb201612015","title":"宽固溶区过渡金属氮化物MNx(M=Ti,Zr,Hf)硬质薄膜原子尺度强化机制研究","volume":"52","year":"2016"},{"abstractinfo":"高熵合金氮化物薄膜性能优异,目前国内对Al0.3CrFe1.5MnNi0.5高熵合金的研究主要是对块体,对薄膜研究较少.采用直流磁控溅射技术在硅片上沉积了Al0.3CrFe1.5MnNi0.5高熵合金氮化物薄膜.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、纳米压痕仪等分析了基板偏压对薄膜的晶体结构、溅射效率、硬度和摩擦磨损性能的影响.结果表明:基板偏压为-50 V时,薄膜的晶体结构为面心立方结构(FCC),薄膜截面有明显的柱状结构;随着偏压幅值的增加,衍射峰的强度降低,晶粒尺寸减小,薄膜的溅射效率降低,硬度提高;基板偏压为-150 V时薄膜硬度最高,为13.74 GPa,此时薄膜的抗摩擦磨损性能最好.","authors":[{"authorName":"李荣斌","id":"9df5d94a-a8de-4916-9e5f-756bc8b4828c","originalAuthorName":"李荣斌"},{"authorName":"蒋春霞","id":"68fc1f5e-7f3d-4753-9ccf-88581d18d4a7","originalAuthorName":"蒋春霞"},{"authorName":"孙勇毅","id":"27907682-03b9-4612-a9ee-31c251c7f21d","originalAuthorName":"孙勇毅"},{"authorName":"汪龙","id":"566e7878-fc3f-46d8-88b2-dafa15bb2435","originalAuthorName":"汪龙"},{"authorName":"储祥伟","id":"fab8f7ff-ece3-4446-bbec-7e64d96dddde","originalAuthorName":"储祥伟"}],"doi":"","fpage":"1","id":"35738c5c-2b8c-48c6-893c-52176428d1f1","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"13b4594d-ee91-46c5-b6cc-b5f9d03c751f","keyword":"高熵合金","originalKeyword":"高熵合金"},{"id":"1ceb1480-a5a6-425a-9c6a-9e455ababa73","keyword":"基板偏压","originalKeyword":"基板偏压"},{"id":"cca0fc60-6c47-45fb-bca5-e638ca9e4a73","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"0fe23d2f-a270-4f60-a2f3-125232ec6fcf","keyword":"硬度","originalKeyword":"硬度"},{"id":"a767e4e9-b312-4d00-ac31-d59d972e627c","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"}],"language":"zh","publisherId":"clbh201609001","title":"基板偏压对Al0.3CrFe1.5MnNi0.5高熵合金氮化物薄膜性能的影响","volume":"49","year":"2016"},{"abstractinfo":"提出了在高温和静态氮气氛下利用金属与氮气直接反应制取金属氮化物的合成方法.通过选择不同的反应条件,用该方法合成了从活泼金属(如Li、Mg、La、Ce和Al)到过渡金属(如Ti、Zr、V、Nb和Cr)等10种二元氮化物.时所得氮化物进行XRD物相分析表明,所得产物均以二元氮化物为主相,杂相含量很少.用扫描电镜(SEM)观察了AIN、TiN和VN样品的表面形貌,EDX分析表明,它们的化学组成与名义成分基本一致.与其它氮化物合成方法相比,静态氮气中直接氮化的合成方法具有节省资源和环境友好的优点.","authors":[{"authorName":"曹文焕","id":"404dd8c4-3d91-4d96-80d8-2035dc86cd47","originalAuthorName":"曹文焕"},{"authorName":"董成","id":"2aeceb8d-2a07-4d1e-b553-5bb7a3486abd","originalAuthorName":"董成"},{"authorName":"曾令民","id":"28ff88cf-1f61-47b6-9ee1-68e8fdbeae56","originalAuthorName":"曾令民"},{"authorName":"贺兵","id":"ca32b99f-a809-4e70-9700-2e93191b9dc7","originalAuthorName":"贺兵"},{"authorName":"杨立红","id":"a90445be-903d-40c4-8ae9-500185d9bde4","originalAuthorName":"杨立红"},{"authorName":"刘弘睿","id":"1db605b0-3758-43f0-b33f-27406993a10c","originalAuthorName":"刘弘睿"},{"authorName":"陈红","id":"62311331-1021-4df8-8c98-b93e50a5ea3f","originalAuthorName":"陈红"}],"doi":"","fpage":"86","id":"ce9390db-c610-4b42-bdf4-863311516a8b","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8aada719-b513-458d-bab9-d476f6ffb2f4","keyword":"直接氮化","originalKeyword":"直接氮化"},{"id":"4b1b04e9-610d-469a-84d6-2c38024fc4e7","keyword":"合成","originalKeyword":"合成"},{"id":"2eccfc0e-c41d-4cfa-8b4f-4ded9348a5c5","keyword":"金属氮化物","originalKeyword":"金属氮化物"}],"language":"zh","publisherId":"cldb200906027","title":"静态氮气氛中合成金属氮化物","volume":"23","year":"2009"},{"abstractinfo":"硬度是一个复杂的物理量,用第一性原理难以描述,我们基于固体硬度等于单位面积上所有键对压头的抵抗力之和的观点,从化学键理论出发定义了物质的硬度.本文利用复杂晶体的化学键理论计算了立方氮化物高压相的化学键参数,结果表明这些氮化物具有高的共价成键特性.利用硬度的化学键理论预测了立方氮化物高压相的硬度,通过与实验值的比较说明了结果的合理性.","authors":[{"authorName":"高发明","id":"b8fdf72c-996e-4fad-a59c-9da0bd93c86a","originalAuthorName":"高发明"}],"doi":"10.3969/j.issn.1000-985X.2005.04.022","fpage":"666","id":"ede65600-f0c8-423a-80e4-c66c21cfa690","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a270bd89-77aa-4442-916c-03677276a4f0","keyword":"氮化物","originalKeyword":"氮化物"},{"id":"e31d6ccb-fee1-4acf-8082-835a8d66fe6f","keyword":"硬度","originalKeyword":"硬度"},{"id":"cfdc34ee-a197-48ff-80e3-f01226be58e4","keyword":"化学键","originalKeyword":"化学键"}],"language":"zh","publisherId":"rgjtxb98200504022","title":"高压相立方氮化物的硬度预测","volume":"34","year":"2005"},{"abstractinfo":"氮化物陶瓷是应用广泛的特种陶瓷,但传统的氮化物陶瓷烧结方法极为消耗能源、生产周期长、成本高.为降低成本、能耗,采用燃烧合成工艺制备氮化物陶瓷基复合材料,包括氮化钛和六方氮化硼,燃烧合成工艺利用单质元素与氮气反应合成氮化物.研究结果表明:压坯与80MPa N2反应燃烧合成TiN制件致密度约75%,压坯为添加了TiN稀释剂和适量氧化铝的钛粉,压坯孔隙率45%;燃烧合成纯BN制件致密度为68%,BN基制件致密度为78%,压坯为添加了h-BN稀释剂或SiO2添加剂的B粉压坯与80MPa N2反应合成,压坯孔隙率48%;在材料体系中,稀释剂起减小晶粒尺寸和降低燃烧温度的作用,而Al2O3和SiO2添加剂则起提高强度和相对密度的作用.","authors":[{"authorName":"张宇民","id":"83f8ca66-f2f7-45b8-ac38-2510f9101cd1","originalAuthorName":"张宇民"},{"authorName":"韩杰才","id":"c2d8c8ba-ccb9-4671-9d8e-b3fd1af059f1","originalAuthorName":"韩杰才"},{"authorName":"赫晓东","id":"52496caa-ea8a-41b4-98de-4202821a81b9","originalAuthorName":"赫晓东"}],"doi":"10.3969/j.issn.1005-0299.2002.04.006","fpage":"362","id":"3c97545b-57a6-4c53-a2f4-183a5ee6e716","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"baaf7c52-01f3-445e-a33d-a41ae5481c6b","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"beac74ef-7a64-4e13-a379-07ee5ad69681","keyword":"氮化物","originalKeyword":"氮化物"},{"id":"9c61af50-547a-4cde-9868-f8b4aebc002d","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"adf1ee6e-b35e-4f04-b37b-1a09a1d89961","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"clkxygy200204006","title":"燃烧合成氮化物陶瓷基复合材料","volume":"10","year":"2002"},{"abstractinfo":"随着新工艺和新技术的不断出现,涂层方法越来越多,膜的种类也层出不穷.氮化钛薄膜因具有许多优良的性能而得到了广泛的应用.介绍了几种制备氮化钛硬质薄膜的新方法、形成机理以及其优缺点,并展望了今后的涂层方法的发展.","authors":[{"authorName":"晏鲜梅","id":"57cd133b-007f-4bd0-9226-ee2430e0afae","originalAuthorName":"晏鲜梅"},{"authorName":"熊惟皓","id":"dd49d7f1-d050-458d-9d2d-70fd421c0128","originalAuthorName":"熊惟皓"}],"doi":"","fpage":"236","id":"034d6606-f2b7-4e3f-b5e8-a81240faf6bc","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0a28af21-41c1-4990-8c7d-6976c312230a","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"165f58ec-7578-45a4-933e-8e522239576c","keyword":"硬质薄膜","originalKeyword":"硬质薄膜"},{"id":"39c4e421-cd03-4035-b157-e04c056d92b1","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"cldb2006z1076","title":"氮化钛硬质薄膜的制备方法","volume":"20","year":"2006"},{"abstractinfo":"多元合金化是强化TiN膜的有效途径之一,也是目前研究的热点。本文介绍了几种多元氮化物薄膜的沉积技术及性能特点,重点分析了性能对工艺的依赖关系。","authors":[{"authorName":"谢致薇","id":"9a82369d-8116-4e9f-bee4-926ca8ba0c34","originalAuthorName":"谢致薇"},{"authorName":"王国庆","id":"dec349d1-4ee0-4889-912a-fc2b0328c2bb","originalAuthorName":"王国庆"},{"authorName":"蒙继龙","id":"e43ecd07-d2da-488e-ae61-5fbf3f84af7d","originalAuthorName":"蒙继龙"},{"authorName":"陈海燕","id":"5f8b7de0-1664-4040-96f0-e5b0b7bc2168","originalAuthorName":"陈海燕"}],"doi":"10.3969/j.issn.1673-2812.2000.04.029","fpage":"135","id":"57977927-60bc-4614-bef2-3c1520545b3c","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"71d17a8a-a53a-4271-8bf6-9081aa49a35c","keyword":"多元合金化","originalKeyword":"多元合金化"},{"id":"9421f54e-dd1f-466d-965f-1ad5d23b210d","keyword":"离子镀","originalKeyword":"离子镀"},{"id":"a52f4d87-5dca-4567-a278-c58d1b982d38","keyword":"多元膜","originalKeyword":"多元膜"}],"language":"zh","publisherId":"clkxygc200004029","title":"TiN薄膜的多元合金化强化","volume":"18","year":"2000"}],"totalpage":5052,"totalrecord":50520}