{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文通过太阳能分解甲醇燃料实验,来研究太阳能与化石燃料互补的能源利用系统的能量转换新机理,揭示减少燃料化学能释放过程(火用)损失和提升太阳热能品位的本质,并得到基于实验的量化依据.实验研究了反应过程能量品位关联机理和效果,并揭示了主要因素影响规律.太阳热能温度的升高,有利于分解反应的进行,但温度过高会负面影响品位提升的效果,260℃左右是较合理的;与太阳能甲醇分解反应装置规模对应的进料量条件是影响能量转换过程的关键因素,也将影响太阳热能品位提升效果.研究成果将为开拓太阳能与化石能源互补的能量系统提供理论支撑和实验数据.","authors":[{"authorName":"隋军","id":"7ac9ce24-cb6f-4b26-9c3d-3b3b0df9682e","originalAuthorName":"隋军"},{"authorName":"金红光","id":"ac7095c3-a1f5-4884-bbff-7e88e9cd326f","originalAuthorName":"金红光"},{"authorName":"林汝谋","id":"208ed31b-588a-4ae0-a387-3cccd19f6d42","originalAuthorName":"林汝谋"},{"authorName":"王志峰","id":"fefdb899-2572-4959-a10f-4c3305c67a85","originalAuthorName":"王志峰"}],"doi":"","fpage":"361","id":"f3f472c0-60fb-48e8-a782-3d66a445ed98","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"519aba6b-5bc2-4f05-acb6-4751f2e69259","keyword":"太阳能","originalKeyword":"太阳能"},{"id":"a6163a44-39a4-40f2-8b6c-5b8493724b20","keyword":"甲醇分解","originalKeyword":"甲醇分解"},{"id":"951d6580-76fc-4f67-8f29-cbf45f752da8","keyword":"能量转换","originalKeyword":"能量转换"},{"id":"ff037ec3-f6ea-4d3f-b969-b75d709945fc","keyword":"梯级利用机理","originalKeyword":"梯级利用机理"}],"language":"zh","publisherId":"gcrwlxb200503001","title":"太阳能甲醇分解能量转换机理实验研究","volume":"26","year":"2005"},{"abstractinfo":"本文提出化学能梯级利用新概念,从理论上证明了物质作功能力(ε)、化学反应作功能力(G)和物理能作功能力(ηc)之间的内在联系,拓展了传统热力循环在物理能转换利用范畴的局限.通过CH4直接燃烧和化学链燃烧化学能品位和(火用)损失的比较,指明化学能梯级利用是降低燃烧(火用)损失的有效途径,并指出影响化学能梯级利用的关键因素,揭示了化学能梯级利用机理.","authors":[{"authorName":"金红光","id":"248082cd-bace-4dee-9480-79152e961c08","originalAuthorName":"金红光"},{"authorName":"王宝群","id":"7a106b6e-95f6-4044-aca6-ed41cffdf78a","originalAuthorName":"王宝群"}],"doi":"","fpage":"181","id":"2946ba2d-cbf8-45a2-b75b-4efe7d431200","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"47ac7c36-7b86-4bd3-a08f-0f2395a56152","keyword":"(火用)","originalKeyword":"(火用)"},{"id":"d18e6999-3495-4a52-bd94-d3641fa38c37","keyword":"化学能","originalKeyword":"化学能"},{"id":"5f166590-84ff-46de-8545-131d7beb472b","keyword":"梯级利用","originalKeyword":"梯级利用"},{"id":"2684492b-71b6-4f66-8562-5e4c242c50e9","keyword":"化学链燃烧","originalKeyword":"化学链燃烧"}],"language":"zh","publisherId":"gcrwlxb200402001","title":"化学能梯级利用机理探讨","volume":"25","year":"2004"},{"abstractinfo":"烧结过程余热资源的高效回收与利用是目前钢铁企业降低烧结工序能耗的主要措施之一。从热工角度总结分析了我国烧结余热回收与利用过程中存在的主要问题及其成因,在此基础上,根据热力学第一和第二定律,提出了分级回收与梯级利用技术,即在优先考虑改善烧结工艺条件的前提下,将温度较高的余热实施动力回收,将温度较中和较低的余热实施直接热回收,用于预热干燥烧结原料、点火炉的助燃空气、为热风烧结提供热风等。在此基础上,讨论了分级回收与梯级利用的关键问题:设置适宜的冷却风流量和冷却机内料层厚度是烧结矿显热回收最为关键的两个因素;减小烧结漏风与冷却漏风是分级回收与梯级利用另外一个关键因素。","authors":[{"authorName":"蔡九菊董辉杜涛徐春柏周节旺林科黄显保","id":"a6804218-0474-4aff-8080-a260a4be7607","originalAuthorName":"蔡九菊董辉杜涛徐春柏周节旺林科黄显保"}],"categoryName":"|","doi":"","fpage":"88","id":"55e3ebca-85f4-4159-b6e5-605e9cc42e13","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ae21b59b-6801-4a1d-ac2e-9c9c3ccdd6ce","keyword":"能源","originalKeyword":"能源"}],"language":"zh","publisherId":"0449-749X_2011_4_12","title":"烧结过程余热资源分级回收与梯级利用研究","volume":"46","year":"2011"},{"abstractinfo":"烧结过程余热资源的高效回收与利用是目前钢铁企业降低烧结工序能耗的主要措施之一.从热工角度总结分析了中国烧结余热回收与利用过程中存在的主要问题及其成因,在此基础上,根据热力学第一和第二定律,提出了分级回收与梯级利用技术,即在优先考虑改善烧结工艺条件的前提下,将温度较高的余热实施动力回收,将温度较中和较低的余热实施直接热回收,用于预热干燥烧结原料、点火炉的助燃空气、为热风烧结提供热风等.在此基础上,讨论了分级回收与梯级利用的关键问题:设置适宜的冷却风流量和冷却机内料层厚度是烧结矿显热回收最为关键的2个因素;减小烧结漏风与冷却漏风是分级回收与梯级利用另外一个关键因素.","authors":[{"authorName":"蔡九菊","id":"a0377e35-da6a-4021-869e-6073896ab4f5","originalAuthorName":"蔡九菊"},{"authorName":"董辉","id":"ff75b94d-0037-42c3-9977-d333ef33a432","originalAuthorName":"董辉"},{"authorName":"杜涛","id":"967a8cd1-38a9-43e5-ad53-6a839018e519","originalAuthorName":"杜涛"},{"authorName":"徐春柏","id":"6a00c1e2-dd25-48b8-a140-dad599e0e795","originalAuthorName":"徐春柏"},{"authorName":"周节旺","id":"d903e8a4-c030-48a0-bd9a-2f23544b0572","originalAuthorName":"周节旺"},{"authorName":"林科","id":"814d9ab5-d93b-48ed-ad6e-aa9bf2dcea15","originalAuthorName":"林科"}],"doi":"","fpage":"88","id":"8407232b-63fd-4f7a-be12-b9f603cbe7d2","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ea36655a-a319-4d3a-9454-483e494f9c85","keyword":"烧结","originalKeyword":"烧结"},{"id":"8defeb98-8b0d-4a16-b3f4-a17ed7b7c040","keyword":"余热","originalKeyword":"余热"},{"id":"5db30a6a-9390-44e4-adf4-6939412fb74b","keyword":"回收","originalKeyword":"回收"},{"id":"c61dd138-0679-4e8c-a883-26522cf2bffe","keyword":"余热发电","originalKeyword":"余热发电"},{"id":"e7f6c188-ad0b-4ec4-b790-b294767cbca4","keyword":"能源","originalKeyword":"能源"}],"language":"zh","publisherId":"gt201104018","title":"烧结过程余热资源分级回收与梯级利用研究","volume":"46","year":"2011"},{"abstractinfo":"本文提出了综合梯级利用LNG化学能和冷(火用)的多重联合循环.在对多重联合循环系统集成的设计构思基础上,通过不同物性工质和不同循环方式的系统集成,实现了LNG化学能和冷(火用)的高效梯级利用.新循环的(火用)效率与参比循环相比提高了2.3个百分点.本文成果为更高效综合利用LNG提供新的构思和方案.","authors":[{"authorName":"韩巍","id":"6bddb370-638c-4d1d-82d4-f7470e23bc94","originalAuthorName":"韩巍"},{"authorName":"金红光","id":"43aa1d51-1bb0-4fbf-8f8d-77e242203280","originalAuthorName":"金红光"},{"authorName":"林汝谋","id":"9f8ffa9c-2313-47be-bed1-4017f6032931","originalAuthorName":"林汝谋"}],"doi":"","fpage":"905","id":"9d723b00-17af-40cc-a0d0-ba23dcb035eb","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"65bfd93e-4068-44b4-8d31-6a0c167ab064","keyword":"LNG","originalKeyword":"LNG"},{"id":"398e8cf4-4670-4117-9cb5-1942fe0d6553","keyword":"多重联合循环","originalKeyword":"多重联合循环"},{"id":"40022e8e-44ab-48cd-af3a-c5d94d1b7aa1","keyword":"(火用)分析","originalKeyword":"(火用)分析"}],"language":"zh","publisherId":"gcrwlxb200406002","title":"LNG化学能与冷(火用)综合梯级利用的多重联合循环","volume":"25","year":"2004"},{"abstractinfo":"为了实现太阳能光伏发电系统中用于冷却太阳能电池的低品位热能利用,本文提出了太阳能光伏热水系统。通过对单体光伏光热系统(PV/T)的实验研究表明,在单体PV/T放置角度为30°,流量为200 L/h时,集热效率可达到最大值65.6%,系统的平均发电效率为14.3%,瞬时综合效率最大为83%,达到了能量的梯级利用。","authors":[{"authorName":"关欣","id":"1181d585-6660-46fb-b638-f5b6f61b3b84","originalAuthorName":"关欣"},{"authorName":"王艳迪","id":"0b44fcb9-ad29-4c89-afab-b3a20d688edd","originalAuthorName":"王艳迪"},{"authorName":"向勇涛","id":"19053602-7716-47fd-862c-5d428053a88c","originalAuthorName":"向勇涛"},{"authorName":"郭志波","id":"8d3fb656-1edd-4c98-ad0c-9f76647f9a7b","originalAuthorName":"郭志波"}],"doi":"","fpage":"1240","id":"d0f92bd0-1713-4eef-b487-a7c7b515690d","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0af1be46-02f4-4769-a594-3ae998126540","keyword":"光伏-热水系统","originalKeyword":"光伏-热水系统"},{"id":"84c93028-f3b2-4394-880a-be610448938c","keyword":"能量梯级利用","originalKeyword":"能量梯级利用"},{"id":"bfc52435-3692-4cd5-aae0-c362acfcba9e","keyword":"集热效率","originalKeyword":"集热效率"},{"id":"3bdf43bc-375e-4fd5-bd2f-ce80fe4e48da","keyword":"发电效率","originalKeyword":"发电效率"}],"language":"zh","publisherId":"gcrwlxb201207037","title":"太阳能光伏热水系统的能量梯级利用","volume":"33","year":"2012"},{"abstractinfo":"结合某钢铁厂430 m2烧结机及环冷机的烟气气氛和温度分布情况,提出烧结烟气的脱硝-余热利用-脱硫一站式解决方案。根据烧结烟气的气氛和温度将烧结烟气划分成3部分:非脱硫脱硝系烟气(115℃)、脱硫脱硝系烟气(86℃)和脱硫系烟气(360℃)。其工艺流程为,首先利用冷却机中温段热空气(150℃)和脱硫系烟气以及其他外部热源对脱硫脱硝系烟气进行加热,使脱硫脱硝系温度达到270~320℃后进入脱硝装置,采用低温NH3-SCR法进行脱硝;其次将270~320℃已脱硝的烟气通入余热锅炉内生产蒸汽,产生的蒸汽一部分用于烧结矿料的预热,其余部分并入蒸汽管网;然后将160℃的锅炉尾部烟气与换热后的脱硫系烟气通入浓缩塔中,与来自脱硫塔的硫酸铵溶液接触换热,烟气冷却至最佳脱硫温度70~80℃后进入脱硫塔内,采用湿式氨法脱硫技术进行脱硫,与此同时硫酸铵溶液因水分的蒸发而浓缩,烟气的余热进一步得到有效利用。本工艺可使烧结系统烟气的余热得到最大限度的回收以及烟气排放得到有效控制。","authors":[{"authorName":"刘传鹏","id":"992a0552-047e-48db-adb1-a88d3bd764f1","originalAuthorName":"刘传鹏"},{"authorName":"杨东伟","id":"6daf1ebf-6839-46a6-b471-596a98c6faa6","originalAuthorName":"杨东伟"},{"authorName":"惠建明","id":"13379790-8cc0-42be-9b8c-9e835797556a","originalAuthorName":"惠建明"},{"authorName":"朱国荣","id":"54817a9a-949f-49d0-bd29-32936936a7ad","originalAuthorName":"朱国荣"},{"authorName":"郁鸿凌","id":"4c23925d-0043-4509-8d53-fb33ea9ca462","originalAuthorName":"郁鸿凌"}],"doi":"10.13228/j.boyuan.issn1001-0963.20150364","fpage":"50","id":"4db4aeac-66a4-45f8-a6aa-723140322c3c","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"17c46656-92d8-40ef-bc7f-699a8321363f","keyword":"烧结","originalKeyword":"烧结"},{"id":"f915bffc-87aa-464d-a0b2-142d46f4e729","keyword":"余热回收","originalKeyword":"余热回收"},{"id":"0ba9b2a9-95a0-49ed-a551-7b73bfe94c29","keyword":"梯级利用","originalKeyword":"梯级利用"},{"id":"f6f582a6-42d3-474e-a08e-61ffea831bd2","keyword":"脱硫脱硝","originalKeyword":"脱硫脱硝"}],"language":"zh","publisherId":"gtyjxb201610010","title":"烧结余热梯级利用及脱硫脱硝一站式解决方案","volume":"28","year":"2016"},{"abstractinfo":"某电梯梯级链长轴销在装配过程中发生了断裂,采用光学显微镜、扫描电子显微镜、直读光谱仪、能谱仪和显微硬度机等对断裂的轴销进行了宏观形貌、化学成分、硬度、显微组织和开裂面形貌分析,以找出断裂原因.结果表明:其断裂的主要原因是轴销表面存在磨削应力和淬火残余应力,并在氢的共同作用下,轴销表面产生了氢致延迟性开裂,随着时间的延长裂纹进一步扩展,导致了轴销在装配过程中断裂.","authors":[{"authorName":"王荣","id":"1d113d68-a139-4790-8952-878d80bc7329","originalAuthorName":"王荣"},{"authorName":"郭春秋","id":"2fa37d36-2763-4aa5-8ec2-fb7a2b105752","originalAuthorName":"郭春秋"}],"doi":"","fpage":"74","id":"59ba4e33-149e-4978-92ec-331fed56e931","issue":"12","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f0739a2d-1d51-4894-88be-f1d5343094d2","keyword":"磨削应力","originalKeyword":"磨削应力"},{"id":"ee3a50cc-6fec-4e3c-80ad-1ae6862cb5a0","keyword":"淬火残余应力","originalKeyword":"淬火残余应力"},{"id":"605b7cb7-f230-496f-a582-65c8d4d542ae","keyword":"氢致延迟性开裂","originalKeyword":"氢致延迟性开裂"},{"id":"698369ea-28ce-4e12-b9d8-495d38c3fbb9","keyword":"电梯轴销","originalKeyword":"电梯轴销"}],"language":"zh","publisherId":"jxgccl201012021","title":"电梯梯级链长轴销断裂原因分析","volume":"34","year":"2010"},{"abstractinfo":"用Pb(Ⅱ)参与钙矾石的合成试验表明,在SO42-存在时,钙矾石把少量的Pb(Ⅱ)包容在其晶格内,造成化学俘获,但在无SO42-时,Pb(OH)3-不能替代SO42-进入钙矾石晶格;另一种水泥水化物CSH在碱性条件下对溶解态Pb(Ⅱ)的吸附很强.监测水泥浆液中溶解态Pb(Ⅱ)、SO42-的浓度和pH值的变化过程可知,PbSO4和Pb(OH)2的沉淀作用能把绝大多数的溶解态Pb(Ⅱ)予以固化.采用TCLP检测法检测表明,采用复合型水泥固化Pb2+的效果良好,尤其是不掺石膏的复合水泥.虽然搅拌水中Pb2+的浓度达到4g/L,但其28d龄期的胶砂粉碎样滤取Pb2+的浓度已低至0.0002g/L.由于形成的Pb(OH)2沉淀物阻止水泥水化使得掺Pb(NO3)2后砂浆试件早期的抗压强度有所降低.因此,复合水泥对铅固化的机理主要是Pb(Ⅱ)在水泥浆中发生的沉淀作用、水化物对Pb(Ⅱ)的化学俘获和混凝土中微孔隙对含Pb微粒的裹限作用.","authors":[{"authorName":"蓝俊康","id":"0e61742c-93c8-4c94-80d3-a80c2e68add1","originalAuthorName":"蓝俊康"},{"authorName":"王焰新","id":"1bb8c09b-e0d9-4815-97eb-b668d65a4113","originalAuthorName":"王焰新"}],"doi":"10.3969/j.issn.1001-1625.2005.04.003","fpage":"10","id":"60d2b677-bab4-4b5b-899f-73cec678f635","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"1787429c-cb52-4976-a634-1e29f0392b78","keyword":"复合水泥","originalKeyword":"复合水泥"},{"id":"54b4831d-5949-44eb-bd4c-f5b523639125","keyword":"固化","originalKeyword":"固化"},{"id":"f18ac468-ff74-4a75-b34f-d9fbc9e50882","keyword":"Pb2+","originalKeyword":"Pb2+"}],"language":"zh","publisherId":"gsytb200504003","title":"利用复合水泥固化Pb2+的机理探讨","volume":"24","year":"2005"},{"abstractinfo":"在非等温加热条件下采用热分析技术(热重法TG和微商热重法DTG)进行了C-CO2气化实验。利用Popescu法对C-CO2气化反应的机理函数进行了推断。结果表明,反应级数模型(n=1)是C-CO2气化的最概然机理函数。由Popescu法求得的C-CO2气化过程的活化能和指前因子分别为165.86kJ/mol和8.80×10^6 s^-1。分别由实验数据和由等转化率法求出的活化能验证了所求得的机理函数的正确性。Popescu法是分析C-CO2气化反应机理的1种较为合理、可靠的方法。","authors":[{"authorName":"刘忠锁","id":"5cd7245a-7a33-4e9b-9453-2d28ef80b3ea","originalAuthorName":"刘忠锁"},{"authorName":"汪琦","id":"5884c971-248c-47c5-a1e7-1cc21fd62c79","originalAuthorName":"汪琦"},{"authorName":"邹宗树","id":"c0193c1b-cd0c-4613-8ab5-57489daa3991","originalAuthorName":"邹宗树"},{"authorName":"谭广雷","id":"445e6cf4-2b28-4355-a47a-4cb45f2d0a43","originalAuthorName":"谭广雷"}],"doi":"","fpage":"12","id":"6e03c783-757d-4918-9734-a9fea1e8b6c7","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"4204cf13-8297-4f59-937d-99ebdcb7cfdc","keyword":"Popescu法","originalKeyword":"Popescu法"},{"id":"ab217ba7-6be4-496b-aea4-30d1a107cc90","keyword":"碳-CO2","originalKeyword":"碳-CO2"},{"id":"69a3d85f-8f99-4a8b-898e-a32b0a4171e3","keyword":"气化","originalKeyword":"气化"},{"id":"f948eef5-3eab-4d60-84cc-7fe65f51628b","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"gtyj201106005","title":"利用Popescu法研究C-CO2气化反应机理","volume":"39","year":"2011"}],"totalpage":5449,"totalrecord":54489}