{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了混合溶剂体系中阴离子分别为BF4-,PF6-,Cl-,Br-和r的14种离子液体对来源于黑布糖苷酶催化合成红景天苷反应的影响.结果表明,在最佳反应条件下,β-糖苷酶的反应初速度和红景天苷的产率分别为3.3mmol/(L·h)和24.5%.离子液体咪唑阳离子的烷基链长(C2~C10)对β-糖苷酶的活性影响较大,当烷基链长为C6时,糖苷酶表现出较高的催化活性.","authors":[{"authorName":"毕艳红","id":"f5aa5d47-b93f-4593-b5ed-32d0acca799e","originalAuthorName":"毕艳红"},{"authorName":"王朝宇","id":"0629e879-9d84-47c9-a99c-bc1d806a7cf5","originalAuthorName":"王朝宇"},{"authorName":"茅燕勇","id":"f69b8ee6-077f-401e-abec-ac88009f8aca","originalAuthorName":"茅燕勇"},{"authorName":"郑尚永","id":"9cbfbac4-7736-45af-8321-b22e43f9d7a4","originalAuthorName":"郑尚永"},{"authorName":"张海江","id":"db183fc4-6dad-4059-84c3-6aa061474e3b","originalAuthorName":"张海江"},{"authorName":"时号","id":"70d9757b-9290-4fce-b268-c88cb255fdc9","originalAuthorName":"时号"}],"doi":"10.1016/S1872-2067(11)60395-1","fpage":"1161","id":"e69579ff-917c-4d43-84a2-8d9dacef7f88","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"fa153cbb-e494-4bd7-88f7-b6c7aca5345f","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"b81a51a8-f0a8-4f54-90e7-a91bc70290b2","keyword":"红景天苷","originalKeyword":"红景天苷"},{"id":"1d982172-687b-4d53-8d99-ab5223e4ffe6","keyword":"糖苷化反应","originalKeyword":"糖苷化反应"},{"id":"a2915fe3-954e-4daa-a5ef-7d464f3b7c42","keyword":"黑布","originalKeyword":"黑布林籽"},{"id":"20b42ab6-cbc6-48ed-beff-5b2bbcbc7803","keyword":"混合溶剂","originalKeyword":"混合溶剂"}],"language":"zh","publisherId":"cuihuaxb201207015","title":"离子液体对β-糖苷酶催化合成红景天苷的影响","volume":"33","year":"2012"},{"abstractinfo":"大麻油和甲醇经NaOH催化合成生物柴油,考察了醇油比、反应温度、催化剂用量和反应时间对酯交换反应的影响.采用变色酸比色法测定反应液中的甲醇转化率,采用色质联用、凝胶渗透色谱和红外光谱测试技术对大麻油酯交换产物进行分析.结果表明,提高反应温度和增大催化剂用量有利于酯交换反应的 发生.甲醇的转化率随反应时间的延长呈现先增大后减小的趋势.随着醇油摩尔比的增加,甲酯生成率增大,而甲醇的转化率减小.凝胶渗透色谱分析表明,经二次甲醇酯交换反应大麻油可以比较完全的转化为甲酯.","authors":[{"authorName":"金付强","id":"a23cdcc7-5741-4a88-ada3-7e0b83625dd0","originalAuthorName":"金付强"},{"authorName":"张建春","id":"352967e2-54da-4334-b25a-3838bae57c83","originalAuthorName":"张建春"},{"authorName":"杨儒","id":"cedfb6c8-2a25-479c-9853-d4075896f498","originalAuthorName":"杨儒"},{"authorName":"李敏","id":"bdc65a77-b7b5-449e-91eb-70ab5b6f0b21","originalAuthorName":"李敏"},{"authorName":"郝新敏","id":"b9d218ea-b38b-4b1f-ad74-8be2bd68e7e4","originalAuthorName":"郝新敏"},{"authorName":"张华","id":"0da56b2a-327f-4ab7-bc5e-7b7fbbb33d66","originalAuthorName":"张华"}],"doi":"10.3969/j.issn.1000-0518.2007.01.022","fpage":"100","id":"16a75d1f-191e-4fe9-994e-b196cc318742","issue":"1","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"593a56a6-1eec-46c1-94d4-faa560f99f5d","keyword":"大麻油","originalKeyword":"大麻籽油"},{"id":"bd913dfc-7500-469a-aeaa-a46506ba1100","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"a49c3693-7bb7-4f6c-b9bc-da74dbcd8e64","keyword":"甲酯化","originalKeyword":"甲酯化"},{"id":"0c2f4a98-bb21-4955-81ac-9494122f8bad","keyword":"生物柴油","originalKeyword":"生物柴油"},{"id":"cde46a78-f045-40e1-a381-bbd043aa3881","keyword":"酯交换","originalKeyword":"酯交换"}],"language":"zh","publisherId":"yyhx200701022","title":"大麻油合成生物柴油","volume":"24","year":"2007"},{"abstractinfo":"初步研究膜分离技术对沙棘油的精制效果及考察其适用性.以膜通量、膜污染阻力及油脂理化参数为考察指标,研究不同切割分子量超滤膜及操作条件对沙棘油精制效果及其膜过程的影响.实验结果表明,切割分子量30 000的超滤膜适合于沙棘油膜精制,其对磷脂的截留率高达90%以上,并能在一定程度上降低油脂的酸值、皂化值,提高沙棘油的稳定性.操作压力、转速及溶液浓度对油脂膜精制过程中的膜通量及膜污染程度有着重要的影响.不同操作条件对沙棘油的精制效果没有显著性差异.膜分离技术能够应用于沙棘油的精制过程,能够达到较好的精制效果,提高沙棘油的稳定性.","authors":[{"authorName":"刘红波","id":"101960d7-791a-428f-bd1f-1e34cfa61853","originalAuthorName":"刘红波"},{"authorName":"唐志书","id":"0689c42c-c495-4cae-84bc-878b74f0f679","originalAuthorName":"唐志书"},{"authorName":"宋忠兴","id":"2272eed4-bcf2-47f5-b8e2-4c61833c9788","originalAuthorName":"宋忠兴"},{"authorName":"刘世军","id":"9d192b07-3931-4bab-ad36-2c92e1dfce34","originalAuthorName":"刘世军"},{"authorName":"梁燕妮","id":"a40c5b65-b109-49a6-8858-a5ff52527c0d","originalAuthorName":"梁燕妮"},{"authorName":"张娱","id":"00942231-7e94-451d-b883-52e29393e447","originalAuthorName":"张娱"},{"authorName":"党文涛","id":"479e4f1c-420f-40b8-9b7f-123b16e468a8","originalAuthorName":"党文涛"}],"doi":"10.16159/j.cnki.issn1007-8924.2017.02.020","fpage":"124","id":"3fd5469c-f22e-42b6-affc-a9c180792927","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"944a8dec-1c13-4c14-a052-8a8fd0399e7c","keyword":"膜分离技术","originalKeyword":"膜分离技术"},{"id":"56fd6281-6c1e-4f06-a760-a530d4ce7287","keyword":"沙棘油","originalKeyword":"沙棘籽油"},{"id":"7e35706f-41d2-456a-ade2-a895cd030989","keyword":"精制","originalKeyword":"精制"}],"language":"zh","publisherId":"mkxyjs201702020","title":"膜分离技术对沙棘油精制的初步研究","volume":"37","year":"2017"},{"abstractinfo":"以花椒油、二乙烯三胺和氯化苄为原料,经过酰胺化、环化和季铵化反应合成了咪唑啉季铵盐H.用失重法评价了H的缓蚀性能.研究结果表明,制备的缓蚀剂H在盐酸体系中对A20钢有很好的缓蚀效果,缓蚀效率为93.5%~98.5%,在60℃的4%的盐酸中,其使用浓度为50 mg/L时,A20钢的腐蚀速率仅为0.779 g/m2·h.","authors":[{"authorName":"马养民","id":"c828b235-adfe-4658-b43f-84acc97a815d","originalAuthorName":"马养民"},{"authorName":"牛振宁","id":"0d645645-0721-4cb6-9c95-2607cf42b831","originalAuthorName":"牛振宁"},{"authorName":"杨广智","id":"da09b577-d6da-44dd-bd47-d5dbca3a8fb4","originalAuthorName":"杨广智"}],"doi":"","fpage":"22","id":"a0a816e5-bc0f-425e-a8a5-ca89ac36d6d6","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ad41b8ad-b69c-4703-bfe9-77f6bb347532","keyword":"咪唑啉","originalKeyword":"咪唑啉"},{"id":"61786fc0-fe88-46e4-b5aa-67c2a245cc31","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"e5c0256b-28f0-41a2-90b9-8c900088859d","keyword":"花椒油","originalKeyword":"花椒籽油"},{"id":"af5a0b91-72f2-49c4-b68e-e38e8234d0a6","keyword":"合成","originalKeyword":"合成"},{"id":"f9d9b95f-d994-4ec3-8f42-ce759ed1e36b","keyword":"缓蚀效率","originalKeyword":"缓蚀效率"}],"language":"zh","publisherId":"fsyfh201001006","title":"由花椒油制备缓蚀剂的缓蚀性能","volume":"31","year":"2010"},{"abstractinfo":"以水为溶剂,设计玻璃保温装置,采用静电纺丝技术制备了葡萄多酚/明胶复合纤维,系统探讨了浓度、温度、电压、流速等工艺条件以及葡萄多酚含量对葡萄多酚/明胶复合纤维形貌的影响.结果表明:当明胶浓度为24wt%时,随着温度和电压的增大,纤维平均直径先减小后增大,随葡萄多酚含量增大,纤维平均直径增大.通过加入适量葡萄多酚,可将纺丝速度从0.25 mL/h提高到0.90 mL/h,显著提高了工作效率;当葡萄多酚与明胶的质量比≥1∶30时,纤维表面出现串珠;当葡萄多酚与明胶的质量比≥1∶20时,可纺性变差.在明胶浓度为24wt%,葡萄多酚与明胶质量比为1∶50,控制温度55℃,电压20 kV,接收距离12 cm,速率0.90 mL/h的条件下,制备了纤维直径分布集中,平均直径为515 nm的葡萄多酚/明胶复合纤维.明胶溶液中加入适量葡萄多酚不仅大大提高了纺丝效率,同时由于其良好的抗菌活性和对明胶的交联作用,使复合纤维膜可广泛应用于生物医药领域,特别是创伤敷料方面.","authors":[{"authorName":"邢祖阁","id":"9112deaf-cd61-48fb-8f4f-7413825787ba","originalAuthorName":"邢祖阁"},{"authorName":"韩晓彤","id":"369343dd-ad83-4d50-bd1e-c63cd2b1e857","originalAuthorName":"韩晓彤"},{"authorName":"斯绍雄","id":"afcf981d-d8fb-4644-bf29-97789592720e","originalAuthorName":"斯绍雄"},{"authorName":"姚永毅","id":"24fcde69-3524-4560-9bf7-77e50513336c","originalAuthorName":"姚永毅"},{"authorName":"张其翼","id":"11530c57-3dfe-43e9-b646-324c7a2c02af","originalAuthorName":"张其翼"}],"doi":"","fpage":"1457","id":"5c742376-c66e-4512-9785-702a66550046","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"49709d6e-7124-4027-848a-4e8c5ee5445e","keyword":"水溶液","originalKeyword":"水溶液"},{"id":"f48c723b-1f6c-48b2-b10c-1716827bd52c","keyword":"明胶","originalKeyword":"明胶"},{"id":"13d69861-ef1c-42ef-836f-7927991b49fb","keyword":"葡萄多酚","originalKeyword":"葡萄籽多酚"},{"id":"c9a4b27d-121f-4f5b-859a-e9e364b5e888","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"cda813db-b436-47d1-a347-b63aa9bac692","keyword":"复合纤维","originalKeyword":"复合纤维"}],"language":"zh","publisherId":"fhclxb201406011","title":"水溶液电纺制备葡萄多酚/明胶复合纤维","volume":"31","year":"2014"},{"abstractinfo":"介绍了卡型金矿称谓的演变及不同学者在卡型金矿认识上的差异,通过分析这些不同称谓演变和认识上的差异,结合笔者多年来在滇黔桂\"金三角\"地区的找矿实践和思考,认为:对卡型金矿应\"只求同\"(要求其最基本的表面的特征相同或相似),\"须存异\"(容矿岩石、产出地质背景、成因等有所不同),卡型金矿本身不具有成因意义,不是一种成因类型;判别卡型金矿有4条标准;依据4条标准,将卡型金矿定义为区带上_集中分布的(超)微细、浸染、中低温热液矿床.","authors":[{"authorName":"周余国","id":"601a5c6e-0362-415f-aba4-40c05967bfaa","originalAuthorName":"周余国"},{"authorName":"刘继顺","id":"90a5d0aa-e03e-4dac-8ce2-bdcbac61b5d7","originalAuthorName":"刘继顺"},{"authorName":"欧阳玉飞","id":"d958db5b-4345-4219-9031-051aac245d76","originalAuthorName":"欧阳玉飞"},{"authorName":"何兆波","id":"63824c72-c6e3-4a72-b2ea-8d4422cbe96f","originalAuthorName":"何兆波"},{"authorName":"高启芝","id":"bd8ebde0-4a11-4919-aa91-ff82b0e860bc","originalAuthorName":"高启芝"}],"doi":"10.3969/j.issn.1001-1277.2008.11.003","fpage":"7","id":"916bd044-ae39-4754-9af3-178aef2edf2d","issue":"11","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"75039784-1063-478e-adec-5dc3d4f82eca","keyword":"卡型金矿","originalKeyword":"卡林型金矿"},{"id":"56223c23-11f7-4bf1-b40c-ed63013eefb5","keyword":"判别标准","originalKeyword":"判别标准"},{"id":"c1d26690-d78f-46b0-9903-3a6a6ca2c701","keyword":"再定义","originalKeyword":"再定义"}],"language":"zh","publisherId":"huangj200811003","title":"卡型金矿的再定义","volume":"29","year":"2008"},{"abstractinfo":"以茶壳为原料,以K2CO3作为活化剂,制备了新型活性炭。用氮气吸脱附法对活性炭的孔结梢进行了分析。以活性炭为电极材料,6mol/LKOH溶液为电解液组装成超级电容器,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能。结果表明,活化后的茶壳炭,其比表面积高达1272m^2/g,比电容高达150F/g,研究表明茶壳活性炭适用于超级电容器的电极活性材料。","authors":[{"authorName":"田莹莹","id":"40182ad4-1049-45c4-b021-a44f8292a7b7","originalAuthorName":"田莹莹"},{"authorName":"刘恩辉","id":"3fa93f18-931d-4227-9b53-89c877fb9834","originalAuthorName":"刘恩辉"},{"authorName":"沈海杰","id":"b685c668-a660-438b-9a97-6d5a7f3cc41f","originalAuthorName":"沈海杰"},{"authorName":"向晓霞","id":"c2448d20-3f77-477d-90d1-97eaa9b20f2b","originalAuthorName":"向晓霞"},{"authorName":"吴玉虎","id":"1f0718b6-c251-4ea6-92c1-5fe4ebfd70d6","originalAuthorName":"吴玉虎"},{"authorName":"谢慧","id":"0b5c539b-15de-4313-a006-eea0490fa170","originalAuthorName":"谢慧"},{"authorName":"胡添添","id":"0347b0da-b3d9-4b17-84ce-7d3a866ca646","originalAuthorName":"胡添添"}],"doi":"","fpage":"752","id":"9de3c452-bb3b-4ea4-ac1c-e5f488a14e2f","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f9e1e32e-98ea-4cc5-91c8-5010c49df1be","keyword":"茶壳","originalKeyword":"茶籽壳"},{"id":"81dfaf51-de12-47fb-aadc-27842beaca48","keyword":"化学活化法","originalKeyword":"化学活化法"},{"id":"77c2b568-f5a2-4958-af6c-54d736c93349","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"0a335a6a-3e7c-4523-9900-a2530d414cc4","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"gncl201206020","title":"茶壳质活性炭的制备及其电化学性能","volume":"43","year":"2012"},{"abstractinfo":"采用电化学阻抗谱、极化曲线和失重法研究了樟树提取物与两种季铵盐AOBAB和DMMPAB复配后的协同作用。结果表明,25℃时,樟树提取物与0.001 mol/L AOBAB复配的缓蚀率最高为98.31%;与0.001 mol/L DMMPAB复配的缓蚀率最高为98.65%。电化学法与失重法测得的结果基本一致,复配后缓蚀率有较大提高,且缓蚀率随提取物浓度的增加而升高。","authors":[{"authorName":"岳帅","id":"f47b834a-839b-4040-a1a4-0c5a0f4e69c0","originalAuthorName":"岳帅"},{"authorName":"周鹏","id":"e5d84b46-fdf5-4a69-80ac-1be078027e9a","originalAuthorName":"周鹏"},{"authorName":"魏国升","id":"a5ac13a9-c167-4941-9bcd-6a6391584899","originalAuthorName":"魏国升"},{"authorName":"刘飞","id":"739ce7cd-b775-4995-ba6f-b4da647e5148","originalAuthorName":"刘飞"},{"authorName":"王瑛","id":"afc8cd36-818e-424d-bf68-9c55481f373f","originalAuthorName":"王瑛"}],"doi":"","fpage":"1102","id":"e9bb8de3-3f60-47b6-b038-d56ec25a0326","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"e0eadf54-d344-4ce6-b6a7-7b6d128e096e","keyword":"樟树提取物","originalKeyword":"樟树籽提取物"},{"id":"32f9012e-2e92-4965-84f9-b68059353c26","keyword":"季铵盐","originalKeyword":"季铵盐"},{"id":"1c92d49f-7e6e-475a-8400-400ca0fa651d","keyword":"复配","originalKeyword":"复配"},{"id":"3eaed097-ab49-40b0-a3cd-73f9a86522a9","keyword":"缓蚀率","originalKeyword":"缓蚀率"}],"language":"zh","publisherId":"fsyfh201411009","title":"樟树提取物与季铵盐复配后的缓蚀性能","volume":"","year":"2014"},{"abstractinfo":"采用溶胶.凝胶法制备了CaO摩尔分数为10%-50%的CaO-ZrO2:系列纳米催化剂,将其用于催化红麻油制备生物柴油,通过CO2-TPD、XRD和TEM等测试技术对催化剂的碱性、结构和表面形貌进行表征.结果表明,CaO摩尔分数低于30%时,CaO与ZrO2:形成连续固溶体,催化剂具有良好的热稳定性能,粒径为10-20 nm.催化实验表明,当CaO摩尔分数为30%时,CaO-ZrO2:催化剂具有最好的催化活性,甲醇与红麻油的摩尔比为12:1、催化剂为油料质量比的2.5%、反应时间3 h时,最高转化率可达到93.2%.","authors":[{"authorName":"陈杰博","id":"b9ee86ab-6f41-478a-a61e-fcaa651a92c7","originalAuthorName":"陈杰博"},{"authorName":"苏金为","id":"1290b0f8-5d2b-4ece-b214-a696b243dc4a","originalAuthorName":"苏金为"},{"authorName":"祁建民","id":"d152f02a-0eba-48c7-8644-d1c43ef0dbca","originalAuthorName":"祁建民"},{"authorName":"陈新香","id":"189b7e77-aeae-42b8-a82c-f14d627335e5","originalAuthorName":"陈新香"},{"authorName":"陈亮","id":"4526ed23-e2d2-4ce4-9a50-a1f23b78b877","originalAuthorName":"陈亮"}],"doi":"10.3724/SP.J.1095.2011.00271","fpage":"267","id":"6d8d0510-cf15-46e7-90e6-0d9878ed982c","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"6a0afbbe-d8c2-4a85-9ac9-d2dba3588f2c","keyword":"CaO-ZrO2","originalKeyword":"CaO-ZrO2"},{"id":"831efdec-5112-4432-bae6-ad5ece0712c4","keyword":"固体碱","originalKeyword":"固体碱"},{"id":"66f52f58-cf44-4bda-b361-a8097c3070e0","keyword":"红麻油","originalKeyword":"红麻籽油"},{"id":"d6e9e0d7-bd40-4f5c-a8da-625576f492ca","keyword":"生物柴油","originalKeyword":"生物柴油"}],"language":"zh","publisherId":"yyhx201103005","title":"纳米固体碱CaO-ZrO2催化红麻油制备生物柴油","volume":"28","year":"2011"},{"abstractinfo":"采用失重法、极化曲线法、电化学阻抗谱研究了25℃时樟树提取物(CCSE)在5% H2 SO4溶液中对 A3碳钢的缓蚀性能。结果表明,樟树提取物为15 g/L 时,在25℃时缓蚀率达84.01%;因其在钢铁表面吸附起缓蚀作用,吸附模型符合 Langmuir 吸附等温式;运用相关公式,求出ΔG 的值在-20~0 kJ/mol 之间,属于物理吸附;并讨论了缓蚀机理。极化曲线表明樟树提取物是一种混合型缓蚀剂。","authors":[{"authorName":"游飞明","id":"223b5c85-2b6f-473b-b2ac-632db624c9a5","originalAuthorName":"游飞明"},{"authorName":"魏国升","id":"16841735-09fb-4a27-8c4a-281651d51ba4","originalAuthorName":"魏国升"},{"authorName":"戴明","id":"4419585e-647b-4640-979e-da4a929ab0df","originalAuthorName":"戴明"},{"authorName":"岳帅","id":"78d3bd3b-78df-40f9-837a-def5a551290f","originalAuthorName":"岳帅"},{"authorName":"王瑛","id":"379d17c3-0ec9-4b10-ad7a-469c94db85a9","originalAuthorName":"王瑛"}],"doi":"","fpage":"1016","id":"89fc5311-e14d-475b-9139-eda32188b79f","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"32c8b629-c109-446d-ba7b-7c7045815bf4","keyword":"樟树提取物","originalKeyword":"樟树籽提取物"},{"id":"a98df422-d8ed-4768-86e7-d2a7df6b4001","keyword":"硫酸","originalKeyword":"硫酸"},{"id":"c2018af7-0435-4389-86cf-727ad61ee6d6","keyword":"缓蚀率","originalKeyword":"缓蚀率"},{"id":"badecbbe-20c2-4899-b29b-40e0427f5b80","keyword":"缓蚀机理","originalKeyword":"缓蚀机理"}],"language":"zh","publisherId":"fsyfh201410014","title":"樟树提取物在5%硫酸中对 A3碳钢的缓蚀性能影响","volume":"","year":"2014"}],"totalpage":22,"totalrecord":215}