Shenqi CHEN
,
Yanchun ZHOU
,
Yiyi LI (Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang 110015
,
China)Shouhua HE(Chinese Academy of Science
,
Beijing 100864
,
China)
材料科学技术(英文)
Nanocrystalline powders in the Ni-Ti and Ni-Cr systems were prepared by mechanical alloying (MA) of elemental crystalline powders in an inert atmosphere. The microstructure of the mechanically alloyed powders were characterized by XRD and TEM. The ball-milling process results in a drastic decrease of the crystallite size to the nanometer scale. X-ray diffraction analysis reveals that in the Ni-Cr system, no diffraction peaks from NiCr compound were observed even after 20 h of ball milling; while the lattice parameter of Ni increased with the milling time. In the Ni-Ti system, amorphous alloy was formed. Crystalline intermetallic compounds were obtained by post heat treatment of the amorphous alloy.The crystallization temperature of the amorphous NiTi alloy was obtained be DSC measurement.
关键词:
Zhijun LIN
,
Meishuan LI
,
Yanchun ZHOU
,
null
,
null
材料科学技术(英文)
Layered ternary ceramics represent a new class of solids that combine the merits of both metals and ceramics. These unique properties are strongly related to their layered crystal structures and microstructures. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM), selected area electron diffraction (SAED), convergent beam electron diffraction (CBED) represents a powerful method to link microstructures of materials to macroscopic properties, allowing layered ternary ceramics to be investigated in an unprecedented detail. Microstructural information obtained using TEM is useful in understanding the formation mechanism, layered stacking characteristics, and defect structures for layered ternary ceramics down to atomic-scale level; and thus provides insight into understanding the ``Processing-Structure-Property" relationship of layered ternary ceramics. Transmission electron microscopic characterizations of layered ternary ceramics in Ti-Si-C, Ti-Al-C, Cr-Al-C, Zr-Al-C, Ta-Al-C and Ti-Al-N systems are reviewed.
关键词:
Layered ternary ceramics
,
ternary
,
ceramics
,
MAX
,
phase
,
TEM
,
S