{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用溶胶凝胶法制备WO3纳米粉体,再与MnCO3固相反应合成MnWO4,掺杂得到不同配比的MnWO4一Li2WO4湿敏材料,通过丝网印刷工艺制备厚膜湿敏元件.实验研究表明在适当的工艺条件下,MnWO4中掺杂30m01%Li2WO4的材料,所制备的元件具有低湿电阻小、灵敏度高、响应速度快、湿滞小的特点,这些特点为产品的实用化提供了有利条件.SEM照片和复阻抗分析.表明,该方法制备的材料具有纳米晶粒和优良的晶界微结构,是改善元件性能的重要原因.","authors":[{"authorName":"彭振康","id":"b1cfb5e4-ad01-4efc-8ea3-e9fe2df5f90e","originalAuthorName":"彭振康"},{"authorName":"陈环","id":"34231bd2-cf99-4f63-8b8d-ce13d3e23582","originalAuthorName":"陈环"},{"authorName":"洪琴","id":"3fdca55e-7064-4e1b-b4d0-3bacd33d64f8","originalAuthorName":"洪琴"},{"authorName":"","id":"8289c7e4-a52d-4070-a4b3-264a7178df29","originalAuthorName":"傅刚"}],"doi":"10.3969/j.issn.1007-4252.2009.02.016","fpage":"189","id":"027c1949-d4b1-411f-8b7b-592694189006","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"5c66fc2c-5c84-461a-a017-1b15744e9f39","keyword":"MnWO4","originalKeyword":"MnWO4"},{"id":"9b11378d-3769-45ae-a100-5aae93f470c0","keyword":"Li2WO4","originalKeyword":"Li2WO4"},{"id":"78b5a712-6bc5-4f8b-8c03-470a42b9accc","keyword":"厚膜","originalKeyword":"厚膜"},{"id":"19450656-7f0f-4ec9-83a9-ec470940100c","keyword":"湿敏元件","originalKeyword":"湿敏元件"},{"id":"da5093ad-9bb8-4413-a384-1e12466e20d0","keyword":"复阻抗分析","originalKeyword":"复阻抗分析"}],"language":"zh","publisherId":"gnclyqjxb200902016","title":"MnWO4-Li2 WO4系厚膜湿敏元件的性能","volume":"15","year":"2009"},{"abstractinfo":"研究Ta2O5对(Sr,Bi,Si,Ta)掺杂的TiO2基压敏陶瓷压敏特性及电容特性的影响,发现按配方TiO2+0.3%(SrCO3+Bi2O3+SiO2)+0.1%Ta2O5配制的样品具有最低压敏电压(E10mA=1.2V·mm-1)、最大相对介电常数(εra=2.002×105)及较小非线性系数(a=2.6).考虑到材料的低压敏电压和大介电常数的要求,Ta2 O5最佳掺杂量在0.085mol%与0.1mol%之间.","authors":[{"authorName":"孟凡明","id":"bf89c05e-7c7e-4084-8542-80b790af0d70","originalAuthorName":"孟凡明"},{"authorName":"胡素梅","id":"653b8c69-9ada-4469-8fb2-afa1f09d4f63","originalAuthorName":"胡素梅"},{"authorName":"","id":"1e42f114-6e86-4c90-b704-fcae4998d1a6","originalAuthorName":"傅刚"},{"authorName":"周方桥","id":"35d038bc-1bb2-46b5-ac7f-7669e4ae338b","originalAuthorName":"周方桥"}],"doi":"10.3969/j.issn.1673-2812.2005.01.027","fpage":"96","id":"1087db5f-2574-467c-b88d-56d35f33c9be","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"3d014134-36aa-45a0-985d-922ee341e51c","keyword":"TiO2基压敏陶瓷","originalKeyword":"TiO2基压敏陶瓷"},{"id":"f39daa1c-b768-4af8-85ae-21dface249af","keyword":"压敏电压","originalKeyword":"压敏电压"},{"id":"00cce2f9-1c5b-4ce7-afa1-673685c355f7","keyword":"非线性系数","originalKeyword":"非线性系数"},{"id":"2a34814c-5cc2-4c9b-95a6-5ec30f3c1507","keyword":"介电常数","originalKeyword":"介电常数"}],"language":"zh","publisherId":"clkxygc200501027","title":"(Sr2+,Bi3+,Si4+,Ta5+)掺杂的TiO2压敏陶瓷中Ta5+的研究","volume":"23","year":"2005"},{"abstractinfo":"制备了SnO2棒状和球状晶粒粉体的气敏元件并进行稳定性测试,初步分析了元件的老化过程和机制.棒状和球状晶粒粉体以等重量比混合的气敏材料在850℃下高温烧结能提高气敏元件的长期稳定性.采用对材料微结构敏感的复阻抗谱方法测量了试样电性能的变化,通过吸收电流曲线分析了试样的与荷电状态有关的离子电导成分.结果表明,试样在通电老化之初电阻电容值有较大波动,通电数天后趋于稳定,老化表现为晶界电阻和晶界电容的变化,说明老化过程伴随着气敏材料的晶界势垒高度和晶界耗尽层宽度的改变,其原因可能是直流偏压作用下晶界层中的离子迁移.","authors":[{"authorName":"陈环","id":"0e18f59a-3aae-427c-ae79-4d5995579cf8","originalAuthorName":"陈环"},{"authorName":"","id":"a5226945-2c21-453a-aff2-ef7f1b88c86f","originalAuthorName":"傅刚"},{"authorName":"吕平","id":"309a7163-2620-47ec-b7eb-dc3ca73937f1","originalAuthorName":"吕平"},{"authorName":"刘志宇","id":"93b592bb-4629-4881-a05c-9157400a26fb","originalAuthorName":"刘志宇"}],"doi":"10.3969/j.issn.1007-4252.2009.03.003","fpage":"228","id":"5498472c-1fd9-49c8-9198-b667438b3cfc","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"6467c1db-478d-4cc7-9443-9212910fe6dd","keyword":"SnO2","originalKeyword":"SnO2"},{"id":"008261f6-e937-4205-a019-a2b24c12ec4f","keyword":"气敏","originalKeyword":"气敏"},{"id":"5d9c766f-db8f-4408-8985-91f17744deac","keyword":"老化","originalKeyword":"老化"},{"id":"b7feac74-fd5d-4cb5-960f-451bfcc2ca88","keyword":"复阻抗谱","originalKeyword":"复阻抗谱"},{"id":"c3430ef3-c816-4596-87a8-52d2644dfccd","keyword":"吸收电流","originalKeyword":"吸收电流"}],"language":"zh","publisherId":"gnclyqjxb200903003","title":"SnO2气敏元件的老化性能分析","volume":"15","year":"2009"},{"abstractinfo":"用显微观察分析、I-V特性及复阻抗频谱的测量,研究了不同Nb5+和Sr2+掺量的SrO-Nb2O5-TiO2系半导体压敏陶瓷材料的微观结构和相关电学性质;讨论了掺杂Nb5+和Sr2+的分布和作用;Nb5+固溶在TiO2中取代Ti4+并使晶粒成为半导化,同时也有助于晶粒生长;而 Sr2+主要分布在晶粒边界处,对表面受主态及材料相关电学性能有重要影响;在大气气氛中热处理后的实验结果表明:处理温度在800℃以上时,能显著提高压敏电压,但只有适当的热处理温度。才能使非线性系数有所改善.","authors":[{"authorName":"周方桥","id":"4f3636a8-b437-41c2-aa1d-2d11ca11a5f0","originalAuthorName":"周方桥"},{"authorName":"李莉","id":"60736722-fa9e-4a0f-afe6-b479f9eb6484","originalAuthorName":"李莉"},{"authorName":"","id":"b8e6f6c6-c71d-4c4b-9004-e092ac826909","originalAuthorName":"傅刚"},{"authorName":"陈志雄","id":"ddd41e7d-0e6f-4f47-8e01-2cc51b47e860","originalAuthorName":"陈志雄"},{"authorName":"庄严","id":"c5eeef11-9128-43db-8d01-1be466421351","originalAuthorName":"庄严"}],"categoryName":"|","doi":"","fpage":"1174","id":"7aa5bd39-056c-4f56-9836-07324819e1cb","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f41b47ee-818a-4f9a-bab7-aa6acf260116","keyword":"(Sr","originalKeyword":"(Sr"},{"id":"2282f6f2-a747-430a-8861-5d3c3d0cca01","keyword":" Nb)-TiO2 ceramic","originalKeyword":" Nb)-TiO2 ceramic"},{"id":"d58a7dfa-d336-4d7f-aafa-ac958f5a9637","keyword":" semiconductor","originalKeyword":" semiconductor"},{"id":"7aa0ba14-b88c-4e1a-bd01-b41adf7d800a","keyword":" varistor","originalKeyword":" varistor"}],"language":"zh","publisherId":"1000-324X_2002_6_6","title":"SrO-Nb2O5-TiO2系压敏陶瓷中Nb5+和Sr2+的研究","volume":"17","year":"2002"},{"abstractinfo":"采用溶胶凝胶法制备Zn2SnO4-LiZnVO4系陶瓷纳米粉体,用平面丝网印刷工艺在氧化铝基片上制备厚膜湿敏元件。与普通陶瓷粉体制备的元件相比,该元件低湿电阻小,长期稳定性较好。测量不同工作频率时的湿敏特性表明,元件在1kHz频率范围感湿线性最佳。复阻抗分析表明,采用溶胶凝胶法制备纳米粉体并控制烧结温度,可获得良好的微结构,是改善元件感湿特性的原因。","authors":[{"authorName":"","id":"58c59994-0717-4d09-9cd7-1fa441fc58a0","originalAuthorName":"傅刚"},{"authorName":"陈环","id":"bce05ac8-6a8c-4088-ae26-dd1a4ce53a65","originalAuthorName":"陈环"},{"authorName":"陈志雄","id":"f0020327-fc55-478f-a9e6-e04f5c4eb969","originalAuthorName":"陈志雄"},{"authorName":"张进修","id":"a3a920f6-5c96-40f3-800e-d7e5465c9535","originalAuthorName":"张进修"}],"doi":"10.3969/j.issn.1007-4252.2001.01.009","fpage":"41","id":"818965ff-cfc2-4a26-a053-6b6ed1f33fa8","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"5c91496e-80dc-41ca-b322-e1400acb1226","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"f67deab8-bfbd-48ee-95bb-7bdea2c3f3f0","keyword":"厚膜","originalKeyword":"厚膜"},{"id":"773d5c57-c1be-4f08-8214-6b1755b49306","keyword":"湿敏元件","originalKeyword":"湿敏元件"},{"id":"0d227a40-a86c-408c-9c9f-a23f1ea45e41","keyword":"复阻抗分析","originalKeyword":"复阻抗分析"}],"language":"zh","publisherId":"gnclyqjxb200101009","title":"Zn2SnO4-LiZnVO4系厚膜湿敏元件的制备和性能研究","volume":"7","year":"2001"},{"abstractinfo":"采用电化学阳极氧化法在HF酸水溶液中使纯钛表面生成结构致密有序的TiO2纳米管阵列薄膜,考察了阳极氧化电压和阳极氧化时间对TiO2纳米管阵列形貌的影响,讨论了TiO2纳米管的形成机理.采用复阻抗谱方法,测量了获得的TiO2纳米管阵列薄膜在不同湿度下的电阻-电抗曲线和相位角-频率曲线,由此分析得到,试样的等效电路由2个RC并联回路串联而成,并拟合出等效电路各元件的参数值,说明TiO2纳米管阵列薄膜表面对湿度变化有较好的响应.","authors":[{"authorName":"王红","id":"ff98310c-3c98-49fa-8dbe-48df9dfd25b0","originalAuthorName":"王红"},{"authorName":"","id":"7e6f028b-dcc3-4519-99b0-b1d38c241ffa","originalAuthorName":"傅刚"},{"authorName":"陈环","id":"96cef0cb-12c2-45c6-bfcc-9380ae9fd4e6","originalAuthorName":"陈环"},{"authorName":"刘志宇","id":"77242276-0cda-4826-adab-b97b35a84248","originalAuthorName":"刘志宇"}],"doi":"","fpage":"100","id":"d6c89ddb-0775-4670-a944-174a0271ea49","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"93cdfde8-4462-40e8-a777-99c149d85116","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"0630a096-6e03-4b90-ad9f-9c6a8a582dc1","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"208d560b-06db-493b-abe9-2e49e437681d","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"da96282d-2f44-42c4-aed2-d4243a5cda62","keyword":"湿度","originalKeyword":"湿度"},{"id":"b00ffea0-98ca-49a7-9bcd-5e125549a79c","keyword":"复阻抗分析","originalKeyword":"复阻抗分析"}],"language":"zh","publisherId":"cldb2008z1032","title":"TiO2纳米管阵列的制备及复阻抗分析","volume":"22","year":"2008"},{"abstractinfo":"采用共沉淀法制备出SnO2-LiZnVO4系纳米粉体,考察了烧结工艺对材料微结构、湿敏特性和电容特性的影响.实验结果表明,适当的烧结工艺可明显改善纳米材料的微结构和感湿特性,采用共沉淀法制备SnO2-LiZnVO4系纳米粉体并选择好烧结温度,可使材料具有棒状晶粒微结构及低湿电阻小、灵敏度适中的湿敏试样.","authors":[{"authorName":"胡素梅","id":"08138817-e109-4386-82ea-636d3abd8204","originalAuthorName":"胡素梅"},{"authorName":"陈海波","id":"5e9af3ed-ba4a-48c8-a8d3-2b5138c498e0","originalAuthorName":"陈海波"},{"authorName":"","id":"c0f9e390-d1c6-4a01-839d-5fee5745bbf8","originalAuthorName":"傅刚"},{"authorName":"孟凡明","id":"54dfcae0-b434-4af6-a1ab-9fd0be367f56","originalAuthorName":"孟凡明"}],"doi":"10.3969/j.issn.1673-2812.2007.01.027","fpage":"108","id":"f06f9346-4c31-4fc5-a93d-aee5a4688e89","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e0c74333-0b9c-49b2-9566-5f30d1494ce8","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"75ba5ce6-93e8-4895-90fd-28f463b37efc","keyword":"烧结工艺","originalKeyword":"烧结工艺"},{"id":"cdef541d-3c77-4836-8425-719ae6598dea","keyword":"微结构","originalKeyword":"微结构"},{"id":"95c81a73-31cc-4393-a0e5-f9e97a08c488","keyword":"电特性","originalKeyword":"电特性"}],"language":"zh","publisherId":"clkxygc200701027","title":"烧结工艺对SnO2-LiZnVO4系纳米湿敏材料性能的影响","volume":"25","year":"2007"},{"abstractinfo":"研究了不同配比导电炭黑和羟乙基纤维素(HEC)感湿胶制备的碳湿敏元件的感湿特性,探讨了山梨醇增湿剂对感湿非线性特性的影响.对碳湿敏元件的体积电阻率、湿敏特性和复阻抗谱的测试结果表明,炭黑含量和山梨醇含量对非线性感湿特性有很大影响,2%炭黑试样在80%湿度附近开始出现电阻的非线性增大;适量山梨醇使试样的非线性湿度响应移向较低湿度区.试样的复阻抗谱在54%湿度时为1个带拖尾的半圆弧,80%湿度时变为带拖尾的2个半圆弧,更高湿度时是拖尾拉长变形明显的2个半圆弧,表明其等效电路是由包括体电阻、炭黑粒界电阻和电极接触电阻三个阻容并联体的串联组成.半圆弧数目随湿度增加的现象,与感湿膜中水分子增加使不同极化机制的作用变得更加明显有关.","authors":[{"authorName":"","id":"51401f0a-e034-42f2-a60d-1665c569b66f","originalAuthorName":"傅刚"},{"authorName":"陈利潮","id":"4feca210-9810-4972-95ed-dbc63a414430","originalAuthorName":"陈利潮"},{"authorName":"彭振康","id":"4d2fe22d-3a8a-4f59-aefc-6adbe3aef04b","originalAuthorName":"彭振康"},{"authorName":"陈环","id":"f60d4968-5476-4b1c-bdb5-60ff36db3cce","originalAuthorName":"陈环"}],"doi":"","fpage":"200","id":"3d2a5f3f-dc58-496a-a633-ac64aa0e2e46","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"e54ff863-d36e-400a-808a-7c23fd1d030a","keyword":"碳湿敏元件","originalKeyword":"碳湿敏元件"},{"id":"300b5703-af50-4b13-9d02-a19b466edb28","keyword":"羟乙基纤维素","originalKeyword":"羟乙基纤维素"},{"id":"2423415a-70e0-4961-8ca1-fb6392a90055","keyword":"山梨醇","originalKeyword":"山梨醇"},{"id":"605f15ea-f4ec-4f73-96d9-61c0ac5c74cc","keyword":"感湿性能","originalKeyword":"感湿性能"},{"id":"ef815974-23c8-4c90-b6d4-eeb3e5f5aab4","keyword":"复阻抗谱","originalKeyword":"复阻抗谱"}],"language":"zh","publisherId":"fhclxb200901035","title":"碳湿敏元件非线性感湿特性的影响因素","volume":"26","year":"2009"},{"abstractinfo":"用显微观察分析、I-V特性及复阻抗频谱的测量,研究了不同Nb5+和Sr2+掺量的SrO-Nb2O5-TiO2系半导体压敏陶瓷材料的微观结构和相关电学性质;讨论了掺杂Nb5+和Sr2+的分布和作用;Nb5+固溶在TiO2中取代Ti4+并使晶粒成为半导化,同时也有助于晶粒生长;而Sr2+主要分布在晶粒边界处,对表面受主态及材料相关电学性能有重要影响;在大气气氛中热处理后的实验结果表明:处理温度在800°C以上时,能显著提高压敏电压,但只有适当的热处理温度,才能使非线性系数有所改善.","authors":[{"authorName":"周方桥","id":"a525a3f8-1a62-4b92-9f8b-71e27ab290fb","originalAuthorName":"周方桥"},{"authorName":"李莉","id":"b781abe7-9190-49b6-ab4c-594fb6ac5595","originalAuthorName":"李莉"},{"authorName":"庄严","id":"ecae8623-28d8-45cd-9ea7-66876b858e76","originalAuthorName":"庄严"},{"authorName":"","id":"6be79082-480d-40f3-93ac-c6e1c9d0dfde","originalAuthorName":"傅刚"},{"authorName":"陈志雄","id":"6f607ae7-3e87-4ae1-a228-2e075d055b82","originalAuthorName":"陈志雄"}],"doi":"10.3321/j.issn:1000-324X.2002.06.015","fpage":"1174","id":"5aa208f1-6f69-4a66-afe8-3c8b71627839","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"92fdbe87-b6b8-4817-9767-864d79b2d72b","keyword":"(Sr,Nb)-TiO2陶瓷","originalKeyword":"(Sr,Nb)-TiO2陶瓷"},{"id":"a1708e70-13bd-4c04-901f-48ac829210b0","keyword":"半导体","originalKeyword":"半导体"},{"id":"30a7214e-64c1-4435-91b6-adcb01aadacf","keyword":"压敏电阻","originalKeyword":"压敏电阻"}],"language":"zh","publisherId":"wjclxb200206015","title":"SrO-Nb2O5-TiO2系压敏陶瓷中Nb5+和Sr2+的研究","volume":"17","year":"2002"},{"abstractinfo":"化技术和化材料是空间充气展开结构的一项合材料;热塑性(和轻度交联热固性)复合材料;铝/聚合物层合板.本文介绍了这几种材料的典型化技术,分别介绍了化体系的特点、研究现状以及该化技术相应的优势与局限性.","authors":[{"authorName":"刘宇艳","id":"68122908-d3fe-495e-a7ba-25ed30bfe56f","originalAuthorName":"刘宇艳"},{"authorName":"孟秋影","id":"e14cb1a9-f66d-4c5b-9944-5cc619d393e1","originalAuthorName":"孟秋影"},{"authorName":"谭惠丰","id":"6d2e3152-f077-4b09-a5fe-8011a51e7de2","originalAuthorName":"谭惠丰"},{"authorName":"杜星文","id":"8f3fcc95-4bc0-4d47-8491-a33690eb3fa8","originalAuthorName":"杜星文"}],"doi":"10.3969/j.issn.1001-4381.2008.02.018","fpage":"76","id":"c3cb1cc1-d85c-456c-a1e9-03c8c2d836d6","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"862d0276-4dd1-465b-9341-f64db13e4cd9","keyword":"空间充气展开结构","originalKeyword":"空间充气展开结构"},{"id":"83d2d0c5-b3e0-45c4-ba13-41c58740e0c8","keyword":"化材料","originalKeyword":"刚化材料"},{"id":"b98188ea-f7b0-4e3b-999b-221523bb92cd","keyword":"化技术","originalKeyword":"刚化技术"}],"language":"zh","publisherId":"clgc200802018","title":"空间充气展开结构用化材料和化技术的研究现状","volume":"","year":"2008"}],"totalpage":88,"totalrecord":874}