{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"结合热轧或CSP冷却工艺特点与要求,通过对水泵及泵组运行特性分析,研究认为采用稳压回流水轮机助动冷却水泵是结构简单、经济可行的方案,但受水泵形式影响很大;采用冷却水溢流稳压水轮机发电是目前最适合的能源回收方案.","authors":[{"authorName":"王贵良","id":"78dc2bbd-72b7-463d-9761-15ba73535fe8","originalAuthorName":"王贵良"}],"doi":"","fpage":"43","id":"78c4101c-b7f0-4d14-92c7-28a80b56ab34","issue":"1","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"c6f3ff76-1512-4e30-a9da-24d032a3ac1b","keyword":"冷却水势能","originalKeyword":"冷却水势能"},{"id":"8fb8edfc-6d84-4c74-a50e-cc2ac1a26329","keyword":"水泵变速节能","originalKeyword":"水泵变速节能"},{"id":"4817c88b-69b2-4a14-bd39-b66f1818d713","keyword":"水轮机助动水泵节能","originalKeyword":"水轮机助动水泵节能"},{"id":"2014f974-8ca7-45db-836c-54de2a253062","keyword":"水轮发电机","originalKeyword":"水轮发电机"},{"id":"10c60431-9c72-440d-9d8a-bd3fd4a7e7f3","keyword":"能源回收","originalKeyword":"能源回收"}],"language":"zh","publisherId":"zgyj201101011","title":"热轧或CSP冷却水能源回收系统研究","volume":"21","year":"2011"},{"abstractinfo":"简要介绍了水泵结垢原因、涂层防结垢原理、方法和应用实例.","authors":[{"authorName":"许正全","id":"8b6ff948-7062-4eca-90de-19bc1afa8057","originalAuthorName":"许正全"}],"doi":"10.3969/j.issn.1005-748X.2000.10.009","fpage":"461","id":"76881ae6-6ee7-48f3-9317-585c286c6697","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c24e9eed-48a3-4c93-bac5-25552bdc62a3","keyword":"水泵结垢","originalKeyword":"水泵结垢"},{"id":"ff923348-7b95-49e4-9b02-2d7665b68957","keyword":"涂层防护","originalKeyword":"涂层防护"},{"id":"fe9f38d2-bd57-43c9-8324-6e544b8ec48b","keyword":"阻垢","originalKeyword":"阻垢"}],"language":"zh","publisherId":"fsyfh200010009","title":"水泵防结垢技术简介","volume":"21","year":"2000"},{"abstractinfo":"某化工厂安装30多台水泵,仅三个月就腐蚀严重.通过分析,腐蚀类型包括孔蚀、气泡腐蚀、缝隙腐蚀,还原菌腐蚀等.在泵体选材、镀层质量、连接部位密封等方面提出了防腐蚀建议.","authors":[{"authorName":"田永淑","id":"73f9d9b4-3188-4182-8299-f53e679fbe7c","originalAuthorName":"田永淑"},{"authorName":"刘荣普","id":"799de6ff-09cd-4913-b0c7-03844f918d46","originalAuthorName":"刘荣普"}],"doi":"","fpage":"33","id":"e8a25063-f678-4609-8582-29e61fcfb9ca","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ce2f5820-5807-4bc6-8738-93f9cdd63ccc","keyword":"水泵","originalKeyword":"水泵"},{"id":"a5df0280-1489-48ee-b6fe-8e11e3f16b80","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fsyfh200201011","title":"水泵腐蚀失效原因分析","volume":"23","year":"2002"},{"abstractinfo":"水泵吸入池内流动恶化时,空气会被吸入泵体,引发振动、空化和效率降低等后果.本文开发设计了电容式空气含量测量仪,对模型水泵吸入池内空气的吸入量进行了测量.试验结果表明,当流速增加时吸入空气流量会增加;当水位增加时吸入空气流量也会增加;相同流动工况下,在所给三种角度挡水墙中,d=30°时吸入空气量最小,流动最平稳.所以选择适当的挡水墙角度可以改善吸入池内的流动,减少吸入空气流量.","authors":[{"authorName":"李萌","id":"2f6fcd10-746c-48dc-bad2-b58da3bb1fa4","originalAuthorName":"李萌"},{"authorName":"袁辉靖","id":"ae598a70-8919-47e1-b80a-c826f92f8e28","originalAuthorName":"袁辉靖"},{"authorName":"刘树红","id":"4b270632-4250-48fd-8028-494b3e4e720d","originalAuthorName":"刘树红"},{"authorName":"周大庆","id":"0dd9d1f9-3501-4b31-b782-6047b4c8b002","originalAuthorName":"周大庆"},{"authorName":"吴玉林","id":"1fbdb828-a69f-4d0f-bd9e-fb7266b3715f","originalAuthorName":"吴玉林"}],"doi":"","fpage":"957","id":"6f26bec2-2a4a-4d63-a3a9-efa3a5b246ae","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"24defab2-abfc-4021-bbb3-3f86375b9d9d","keyword":"水泵吸入池","originalKeyword":"水泵吸入池"},{"id":"eca95f07-2e48-499c-87b4-c60ff68fb00e","keyword":"吸入空气","originalKeyword":"吸入空气"},{"id":"dd8b1a0f-d9dc-4d4f-b575-e125442d8aec","keyword":"电容式空气含量测量仪","originalKeyword":"电容式空气含量测量仪"}],"language":"zh","publisherId":"gcrwlxb200506018","title":"水泵吸入池内空气吸入的试验","volume":"26","year":"2005"},{"abstractinfo":"介绍了海水管系的腐蚀特点及国内外海水泵用材料的主要性能,重点介绍了合金元素对镍铝青铜的腐蚀性能、金相组织的影响,提出了改进铸造镍铝青铜耐腐蚀性能及铸造工艺的几点建议.","authors":[{"authorName":"郭泽亮","id":"499eb70a-0e9f-4988-b0d1-a32f5f58de5e","originalAuthorName":"郭泽亮"},{"authorName":"方亮","id":"5d6f5cb7-e9c7-4ed3-b5f1-255a1c5d89bf","originalAuthorName":"方亮"},{"authorName":"汤文新","id":"ca041183-f14f-4f1b-a465-b7424b33fa8a","originalAuthorName":"汤文新"}],"doi":"","fpage":"22","id":"5c018c17-9842-4372-bf84-36a34151cc91","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"09821997-7950-489f-91c5-abe4538d0563","keyword":"镍铝青铜","originalKeyword":"镍铝青铜"},{"id":"df86dca2-dc7b-49a9-9058-3206a1c60446","keyword":"海水泵","originalKeyword":"海水泵"},{"id":"eee1d1d3-c4b7-4be6-a216-be193b490053","keyword":"海水腐蚀","originalKeyword":"海水腐蚀"},{"id":"f93a0ab1-b1ef-4c69-94db-dc9670b322ec","keyword":"金相组织","originalKeyword":"金相组织"},{"id":"455ad2e7-2dc6-44da-9685-85a27c704c20","keyword":"铜合金","originalKeyword":"铜合金"},{"id":"55890c77-f966-4f75-9c06-9fb111d3bfb6","keyword":"钝化膜","originalKeyword":"钝化膜"}],"language":"zh","publisherId":"cldb200308007","title":"海水泵用铜合金的腐蚀性能评述","volume":"17","year":"2003"},{"abstractinfo":"某发电厂给水泵阀门在使用中发生泄漏.通过解体检查和失效分析后认为该阀门由于填料中吸附了较多的腐蚀性元素和水分,腐蚀介质局部浓度升高,满足了腐蚀的介质条件,闸阀门杆表面产生了缝隙腐蚀,粗糙度变差,经多次开启和闭合后,闸阀门杆对碳纤维垫片的损害程度加重,其配合间隙相应变大,填料丧失了密封性,造成给水泵阀门泄漏.","authors":[{"authorName":"王荣","id":"f3d509aa-185d-4725-8bc3-8bb1ce46022f","originalAuthorName":"王荣"}],"doi":"10.3969/j.issn.1005-748X.2008.04.015","fpage":"223","id":"0de027aa-c8c4-4a0d-9660-8564f82ac160","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d95a0ed1-ffe2-4537-b74a-17daed3ebfbf","keyword":"阀门","originalKeyword":"阀门"},{"id":"98160e35-e0bb-48ec-9abb-29c21fddf9de","keyword":"泄漏","originalKeyword":"泄漏"},{"id":"f1eb1806-cc36-4c28-bdd0-5da5ea5af221","keyword":"闸阀门杆","originalKeyword":"闸阀门杆"},{"id":"d7168c56-624c-4617-98b7-a4f502a79b01","keyword":"缝隙腐蚀","originalKeyword":"缝隙腐蚀"}],"language":"zh","publisherId":"fsyfh200804015","title":"发电厂给水泵阀门泄漏原因分析","volume":"29","year":"2008"},{"abstractinfo":"通过对水泵总成中发生断裂的轴承芯轴进行断口的宏观分析、微观分析和剖面分析,及其中各组件的相对位置、表面痕迹和宏观形貌的分析和讨论,分析失效原因,提出改进建议.结果表明:轴承芯轴属于扭转疲劳断裂;材质中存在着容易引起早期疲劳破坏的较严重的组织缺陷.水泵总成的失效除与材质的质量控制直接相关外,还与其结构设计、装配等因素有关.","authors":[{"authorName":"段莉萍","id":"f512d747-1d7b-4809-95da-0476976b8051","originalAuthorName":"段莉萍"},{"authorName":"元涛","id":"79827a74-ee6e-4a30-a364-9cacf2e3b45a","originalAuthorName":"元涛"},{"authorName":"陈耘","id":"927b815b-a005-4e3b-af29-01391b6fe1bb","originalAuthorName":"陈耘"},{"authorName":"王秀玲","id":"599b62a3-0afb-471f-8ef0-d70fc29f45c3","originalAuthorName":"王秀玲"}],"doi":"10.3969/j.issn.1004-244X.2008.01.019","fpage":"71","id":"95a01731-4e3f-4fa8-b627-439302502161","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"fcadf83d-4bd1-4813-9850-f527a07c577a","keyword":"水泵总成","originalKeyword":"水泵总成"},{"id":"a1667f89-00b6-4d25-8488-8e4050afe6eb","keyword":"轴承芯轴","originalKeyword":"轴承芯轴"},{"id":"e37a4db9-0c40-42d7-9f14-0c47cc03f04a","keyword":"失效分析","originalKeyword":"失效分析"},{"id":"ec301fa1-bd51-4d41-9789-9dde4b9353ca","keyword":"断裂","originalKeyword":"断裂"}],"language":"zh","publisherId":"bqclkxygc200801019","title":"某柴油发动机水泵总成失效分析","volume":"31","year":"2008"},{"abstractinfo":"本文利用 PIV 技术测量了卧式开放式水泵吸水池内部台阶附近的流场,得到了定常不同工况下的流场速度分布图等水力参数结果,通过对试验结果的分析发现,台阶高度、进口来流速度和淹没深度的变化对吸水池内部流场都产生重要的影响.","authors":[{"authorName":"陈铁军","id":"c0bf2897-fe64-444f-8efd-5021b5f0070d","originalAuthorName":"陈铁军"},{"authorName":"刘树红","id":"b1fa26a9-9eb7-4487-b83c-0c4a4d416d63","originalAuthorName":"刘树红"},{"authorName":"吴玉林","id":"a0fc43a4-b2f7-46c5-bfdb-649b927dbe83","originalAuthorName":"吴玉林"}],"doi":"","fpage":"2025","id":"13c2c4ef-35c7-4aec-9977-af8b3a33ad41","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"854e3994-3953-49f3-9b3f-e6b9cb9e9c40","keyword":"水泵吸水池","originalKeyword":"水泵吸水池"},{"id":"c183e040-f921-41ae-a0c6-0d6bec4543c5","keyword":"后台阶流动","originalKeyword":"后台阶流动"},{"id":"40ad85f0-cbd1-4e3c-8d73-e3bff64054bd","keyword":"PIV","originalKeyword":"PIV"}],"language":"zh","publisherId":"gcrwlxb200912012","title":"水泵吸水池后台阶内部流场试验研究","volume":"30","year":"2009"},{"abstractinfo":"考虑到汽车水泵进出口管和蜗壳,对某型汽车水泵进行了全三维流场数值模拟.分析数值模拟结果与试验测试结果的差异,说明该水泵的蜗壳与叶轮不匹配,造成整机性能恶劣.对该泵内部的流场和总压变化过程的进一步分析,提出了减小叶轮出口安装角,扩大扩散管截面积,采用蜗壳高度渐变的改进措施.改进后的水泵进行整机模拟并进行性能预测,表明改进后的水泵性能大大改善.经过实验测试的结果与计算结果吻合,说明改进措施有效,数值计算模型合理.","authors":[{"authorName":"刘婷婷","id":"2a14b28b-9e00-466f-82a0-4875b2dc5b43","originalAuthorName":"刘婷婷"},{"authorName":"王彤","id":"5228b638-8bc2-4d04-a0d3-7298ff58d9aa","originalAuthorName":"王彤"},{"authorName":"杨波","id":"6d46a2f6-8d65-4109-88ff-9b2dfbf324b0","originalAuthorName":"杨波"},{"authorName":"谷传纲","id":"1e86b818-ff83-4542-abc7-efe885199169","originalAuthorName":"谷传纲"}],"doi":"","fpage":"961","id":"30d68d98-5e32-4c78-afb7-b317c1a14a3d","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"301e7359-5401-4a48-b2c2-a09c4b1ea0ad","keyword":"离心泵","originalKeyword":"离心泵"},{"id":"fabb792f-7d1e-4cce-b9ad-40d6af21ffab","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"b1649a22-3375-416a-aa92-7f8e6b3da613","keyword":"开式叶轮","originalKeyword":"开式叶轮"}],"language":"zh","publisherId":"gcrwlxb200906015","title":"汽车水泵性能三维数值模拟及结构改进","volume":"30","year":"2009"},{"abstractinfo":"水泵吸水池中可能会产生空气吸入涡,这些涡能够将空气带入水泵,影响水泵的运行稳定性,造成水泵的性能下降.本文运用图像法对模型水泵开敞吸水池内不同工况下的空气吸入量进行了试验研究.试验结果表明,在水位高度和平均流速都相同的条件下,采用30°和60°防涡墙时的空气吸入量要明显小于采用0°防涡墙时的情况.这说明30°和60°防涡墙能够有效降低吸入涡所引起的空气吸入量,所以可在实际工程中适度加大防涡墙的角度来减少空气的吸入.","authors":[{"authorName":"许兆峰","id":"e404b12b-5edd-4027-87de-d339beeacf03","originalAuthorName":"许兆峰"},{"authorName":"周大庆","id":"9cbd9579-aff5-492a-9301-68bba933f233","originalAuthorName":"周大庆"},{"authorName":"樊毅","id":"ee3199f5-0b7f-4243-ab9d-d15eaa209749","originalAuthorName":"樊毅"},{"authorName":"吴玉林","id":"6458d7d1-da18-4e77-ac2c-d96b6e94a26f","originalAuthorName":"吴玉林"}],"doi":"","fpage":"244","id":"9622972e-15ef-4291-ab6d-78428ebb320c","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4500cb68-370b-4bc3-b4db-c021d1f403dc","keyword":"吸水池","originalKeyword":"吸水池"},{"id":"448b8100-362d-46f7-9431-a8a87a7c1aba","keyword":"图像法","originalKeyword":"图像法"},{"id":"9b1a63f5-cb70-47a1-a351-42567d1ae6a4","keyword":"空气吸入量","originalKeyword":"空气吸入量"},{"id":"c2866a6f-5cdd-41ee-9ae4-acd1cf4a1fff","keyword":"吸入涡","originalKeyword":"吸入涡"}],"language":"zh","publisherId":"gcrwlxb200602021","title":"图像法测量水泵开敞吸水池内空气吸入量","volume":"27","year":"2006"}],"totalpage":372,"totalrecord":3711}