{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"合成了由水杨醛和赖氨酸缩合的新的氨基酸schiff碱配体以及它的镧系元素配合物.用元素分析、红外光谱,1HNMR谱、摩尔电导和差热分析等手段表征了这些化合物,并采用EPR法对这些化合物的抗超氧阴离子自由基( O2·- )的活性进行了测定.结果表明,配体及其镧系配合物对O2·- 有明显的清除作用,而且配合物的抗氧活性比其配体强.","authors":[{"authorName":"周双生","id":"a76eb7fd-2dbb-4450-8a1c-2d3ac87545b0","originalAuthorName":"周双生"},{"authorName":"完茂林","id":"8029b283-3138-4609-81ed-067f2f79a9cf","originalAuthorName":"完茂林"},{"authorName":"张国升","id":"c573cdfd-16ee-4292-a64b-c89a024d301c","originalAuthorName":"张国升"},{"authorName":"周根陶","id":"92832595-415a-4af0-8d7f-55d4c6baf3b3","originalAuthorName":"周根陶"}],"doi":"10.3969/j.issn.1004-0277.2004.01.013","fpage":"45","id":"035a6c17-6e95-46be-892b-b7eb6518d739","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"b1cdaa72-b644-4fb8-8f1a-1bc524f1310f","keyword":"赖氨酸水杨醛schiff碱","originalKeyword":"赖氨酸水杨醛schiff碱"},{"id":"ea9e72fa-c5c1-40dd-8478-495fa4e0a1e4","keyword":"镧系配合物","originalKeyword":"镧系配合物"},{"id":"d43e1a9c-6623-48d8-9d35-ab0107219c96","keyword":"合成","originalKeyword":"合成"},{"id":"34b81123-c678-44a2-8c0e-78b1f374b554","keyword":"超氧阴离子自由基","originalKeyword":"超氧阴离子自由基"}],"language":"zh","publisherId":"xitu200401013","title":"赖氨酸水杨醛schiff碱及其镧系配合物的合成与抗O2·-活性","volume":"25","year":"2004"},{"abstractinfo":"在对轧制时钢管的温降原因进行分析的基础上,给出一种定张减温降计算模型,该模型考虑了辐射、接触传导、内部传导对温度的影响.通过对轧制实验测定得到钢管的温降数据与此模型实例计算的结果进行对比分析,表明该模型比较准确,能够满足生产实际的要求,可用于自动控制系统中定张减温降的计算,从而为控制系统比较准确地对轧机进行设定及调整提供依据.","authors":[{"authorName":"付国忠","id":"2df6a851-8f47-4b56-8f72-ddb7bbbcfe8c","originalAuthorName":"付国忠"},{"authorName":"刘建平","id":"7bbce9ac-9a32-45eb-96fd-189eee9a7fcf","originalAuthorName":"刘建平"},{"authorName":"赵晓峰","id":"447ac541-0f77-4dc8-b74d-90d05019a5dc","originalAuthorName":"赵晓峰"},{"authorName":"刘建明","id":"dab886da-88c3-485b-acd8-36bdef7ca181","originalAuthorName":"刘建明"},{"authorName":"吕庆功","id":"ca75c975-aa2d-40d9-a1bc-e6c2a6290dd3","originalAuthorName":"吕庆功"},{"authorName":"彭龙洲","id":"191fb78f-9fa7-4ff8-bd3d-f5d577b2254b","originalAuthorName":"彭龙洲"}],"doi":"","fpage":"51","id":"f9f1b624-57cd-4daa-8c3b-87273c5da7af","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"86dbadc0-1405-4493-8908-e33b69ac127a","keyword":"定张减","originalKeyword":"定张减"},{"id":"9e7152eb-09a1-44ea-a2de-6bbe76d243e5","keyword":"温降","originalKeyword":"温降"},{"id":"5b41b920-ede8-4551-8e68-3e12ea48cca0","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gt200412013","title":"定张减温降计算模型","volume":"39","year":"2004"},{"abstractinfo":"针对一起运行18a的耐张线夹处导线失效事故,采用宏观检查、扫描电镜、力学性能测试及金相组织检验等分析手段,由失效线夹特征及绞线断口形貌、组织性能劣化特点研究了其失效原因和机理.结果表明,耐张线夹铝管一侧压痕明显,另一侧积垢;外层铝股表面有大量腐蚀坑;铝股及钢芯的断面收缩率增加10%以上;铝股、钢芯断口纵向金相纤维特征弱化,钢芯断口颈缩处纤维特征消失.该次断线主要是线夹压接不良致管内钢芯铝绞线与线夹接触面腐蚀,灰尘、腐蚀产物在管内结垢,发热量增加,绞线温升,材质劣化而引起的.","authors":[{"authorName":"王伟","id":"4f49802e-1113-42d0-a901-ff9452c7f097","originalAuthorName":"王伟"},{"authorName":"朱成丽","id":"9aacffb1-bd23-488a-a512-5d3fa95bef13","originalAuthorName":"朱成丽"},{"authorName":"吴洪亮","id":"d1c38f09-360a-46a3-941a-210fa9eeb0af","originalAuthorName":"吴洪亮"},{"authorName":"李晓红","id":"a4862241-acb3-4060-ae57-14b879598d2b","originalAuthorName":"李晓红"}],"doi":"","fpage":"297","id":"7dedcd6a-1a6f-440e-b015-c3e189c7a387","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"193ebe28-5731-4e96-968b-1b6368f9b07d","keyword":"耐张线夹","originalKeyword":"耐张线夹"},{"id":"48acf1f4-acaa-4b66-9246-0c38cf2f9758","keyword":"断线","originalKeyword":"断线"},{"id":"3824b5a4-0214-4fda-8b5a-50c6afd68606","keyword":"压接不良","originalKeyword":"压接不良"},{"id":"3d3c9254-5ef2-42a9-bba0-355c7067de3a","keyword":"蚀坑","originalKeyword":"蚀坑"},{"id":"61d40d06-fbd8-4e2a-a1e0-9b85b880079f","keyword":"材质劣化","originalKeyword":"材质劣化"}],"language":"zh","publisherId":"fsyfh201403023","title":"耐张线夹内钢芯铝绞线断裂原因及断口特征","volume":"35","year":"2014"},{"abstractinfo":"在室温环境下(25℃)对某ZrTiNiCuBe块体非晶合金材料进行不同应变率条件下的静态与动态压缩实验。并采用扫描电镜技术(SEM)对试样断口、侧面等进行表征,对比静、动态条件下的应力?应变曲线形貌的差异。结果表明:静态压缩时为剪切断裂,微观形貌上出现脉状花样与剪切带;剪切带诱发裂纹的形成,裂纹随着剪切带扩展。动态压缩时为脆性解理断裂,断面粗糙且发现大量熔滴;断口处出现解理台阶,塑性阶段出现明显的锯齿流变现象。从能量守恒定律出发,利用变形过程中弹性应变能的变化规律推测剪切变形区域内温升的变化规律,温升的变化规律揭示锯齿流变与试样的断裂机制。","authors":[{"authorName":"潘念侨","id":"5b38f5be-5f4e-41aa-b510-36e57ba618d2","originalAuthorName":"潘念侨"},{"authorName":"杜忠华","id":"cd695ea3-bade-42db-9f6e-6c432e1a7d3e","originalAuthorName":"杜忠华"},{"authorName":"朱正旺","id":"c1a5bc5e-fb7c-4399-8a83-6f34fba63d3d","originalAuthorName":"朱正旺"},{"authorName":"雷晓云","id":"327e07fb-9b33-4b00-9ced-c5c34927d4bc","originalAuthorName":"雷晓云"},{"authorName":"徐立志","id":"b8177a5b-07d8-49b0-8d22-9311a16a5ee3","originalAuthorName":"徐立志"}],"doi":"","fpage":"973","id":"466be343-8bbf-408a-90b9-b8294e2752a8","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"951c1658-d0f2-4ec4-a9fd-de12a3f9eb60","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"8f11642d-0810-490c-a98f-8f835a0e09ea","keyword":"锯齿流变","originalKeyword":"锯齿流变"},{"id":"5eaee4e7-db28-41d9-a48b-df858f426d57","keyword":"绝热温升","originalKeyword":"绝热温升"},{"id":"05258f6f-61e1-47b4-b597-143fc2a079b4","keyword":"弹性应变能","originalKeyword":"弹性应变能"}],"language":"zh","publisherId":"zgysjsxb201605004","title":"ZrTiNiCuBe块体非晶合金剪切带内温升与断裂温升","volume":"26","year":"2016"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温升的新方法.由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热.线材温升的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线).道次温升为变形区内全部热线温升的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温升计算公式.对φ6.5 mm线材精轧进行了实际温升计算与测量,结果表明:计算的理论温升略低于实际测量温升,线材精轧入口温度越低,出口累计温升越大.","authors":[{"authorName":"赵德文","id":"2afae748-c817-41eb-abd9-0c60c80948bf","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"cf258491-da76-4032-8c9d-b6d028a0f8de","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"a713a461-b476-4c21-b495-63b958cbea11","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"090f2fa2-2bd4-46e1-b009-1a6bc79afef6","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"bc0894fa-95f3-48e6-a949-979e7f92b25f","originalAuthorName":"王国栋"}],"doi":"","fpage":"42","id":"282c0d40-0e9d-4bb6-a305-b0b8b431b0a2","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"73b2ee34-cb3f-45d8-beea-a24fbceb3479","keyword":"热线","originalKeyword":"热线"},{"id":"78166d07-9181-448c-af23-05d74750daa7","keyword":"速度不连续线","originalKeyword":"速度不连续线"},{"id":"fd8099f8-a417-4cf2-a779-3802946658a0","keyword":"剪切功率","originalKeyword":"剪切功率"},{"id":"ff96e6c2-69d4-4a42-ad89-e7ff08768780","keyword":"温升","originalKeyword":"温升"},{"id":"5ff1c559-ea8d-4fda-8d93-7795abf41c7b","keyword":"高速线材轧制","originalKeyword":"高速线材轧制"}],"language":"zh","publisherId":"gt200610011","title":"热线理论计算线材精轧机组的温升","volume":"41","year":"2006"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温升的新方法。由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热。线材温升的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线)。道次温升为变形区内全部热线温升的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温升计算公式。对6.5 mm线材精轧进行了实际温升计算与测量,结果表明:计算的理论温升略低于实际测量温升,线材精轧入口温度越低,出口累计温升越大。","authors":[{"authorName":"赵德文","id":"87a7f2a3-97a2-4a8a-83e0-4cb0d504e4a3","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"775ef5d6-ca1e-4614-b4ad-23f5d4403e09","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"bf89b772-19cc-4e9a-88bd-3e99f0910dc7","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"784fc253-a37f-4a4f-be93-dfd36fa1b5e3","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"0209b175-ee4f-45f6-97a8-b7c726827c0e","originalAuthorName":"王国栋"}],"categoryName":"|","doi":"","fpage":"42","id":"8e8f140d-f744-4883-bccc-e3a7cc615124","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4a4020e0-95d5-4c73-b9b4-96b1daf408bc","keyword":"热线;速度不连续线;剪切功率;温升;高速线材轧制","originalKeyword":"热线;速度不连续线;剪切功率;温升;高速线材轧制"}],"language":"zh","publisherId":"0449-749X_2006_10_1","title":"热线理论计算线材精轧机组的温升","volume":"41","year":"2006"},{"abstractinfo":"通过对高压输电用耐张线夹及夹持导线的宏观形貌、化学成分、腐蚀产物进行分析,探讨了该线夹腐蚀失效的原因.结果表明:该线夹在压接时即存在铝线断股现象,服役过程中使酸性雨水更易进入到压接管内部,对线夹与钢芯铝绞线结合面进行腐蚀生成腐蚀产物,导致耐张线夹电阻增大;随着腐蚀的进行,线夹电阻不断增大,其温度也随之升高;当温度超过临界温度时,热平衡状态被打破,最终线夹过热,导致高温烧损失效;应加强线夹压接管位置的红外测温监控,及时更换温度明显异常的压接管.","authors":[{"authorName":"王若民","id":"67613948-e11f-48e5-825a-945647e34637","originalAuthorName":"王若民"},{"authorName":"詹马骥","id":"c5bfcec7-5a00-4e3d-b8c3-cc8ae36b1c5e","originalAuthorName":"詹马骥"},{"authorName":"季坤","id":"fad04bbc-1535-4f0d-b2d0-e0a6c3cd18b9","originalAuthorName":"季坤"},{"authorName":"严波","id":"5762aad4-1316-4f1b-a398-6bef540edc39","originalAuthorName":"严波"},{"authorName":"王夫成","id":"293d7a45-367c-4e72-b1e8-54671748e326","originalAuthorName":"王夫成"},{"authorName":"杜晓东","id":"34fa50d8-c180-4b94-bef4-334bb0b32a93","originalAuthorName":"杜晓东"}],"doi":"10.11973/jxgccl201703023","fpage":"112","id":"70c96a82-1183-4792-9903-a2d3f429c779","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ba9620cc-12e4-4c4a-8ed2-dabf99baee9b","keyword":"耐张线夹","originalKeyword":"耐张线夹"},{"id":"e9262adb-ad1f-42ae-a53f-f8cf601c190c","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"b1c65b70-8df7-4c01-b691-fbe881df0505","keyword":"热击穿","originalKeyword":"热击穿"},{"id":"08076d01-a062-4829-9d0a-13eb956fbedd","keyword":"钢芯铝绞线","originalKeyword":"钢芯铝绞线"}],"language":"zh","publisherId":"jxgccl201703024","title":"高压输电用耐张线夹失效的原因","volume":"41","year":"2017"},{"abstractinfo":"针对采用弱脱氧工艺冶炼超低碳钢,利用Factsage软件计算了顶渣氧化性与钢水氧活度之间的关系,进而计算了炉渣各组元对硫分配比的影响。结果表明,对于超低碳钢的生产,顶渣中w(FeO+MnO)至少应控制在15%以下,w(CaO)/w(Al2O3)控制在2.5~4.0。工业试验表明,通过顶渣改性将w(FeO+MnO)控制在15%以下可避免回硫现象的发生,成品硫质量分数小于0.005%,达到了钢种要求。","authors":[{"authorName":"","id":"aca2b89b-ff17-4595-b382-3fe66a9ce917","originalAuthorName":""},{"authorName":"王谦","id":"a6957260-7d33-4e7f-9356-debaf40cc82c","originalAuthorName":"王谦"},{"authorName":"何生平","id":"56fa5cfa-2ff3-41dc-a413-0d67bccfdfcf","originalAuthorName":"何生平"},{"authorName":"曾建华","id":"2b18105c-931f-4af9-a119-16f12c02b23f","originalAuthorName":"曾建华"}],"categoryName":"|","doi":"","fpage":"38","id":"bb312745-2a21-466a-b96f-fbd2f18b038c","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"bfb097c8-7b76-48ea-bf1a-3e7544ce5bd2","keyword":"弱脱氧; 硫容量; 硫分配比; 超低碳钢","originalKeyword":"弱脱氧; 硫容量; 硫分配比; 超低碳钢"}],"language":"zh","publisherId":"0449-749X_2011_5_3","title":"超低碳钢弱脱氧工艺下炉渣组分的控制张国兴","volume":"46","year":"2011"},{"abstractinfo":"分析了宝钢1420冷轧酸轧机#机架后的测张辊在正常轧制中产生的划伤问题,通过对测张辊的表面状态、辊径、安装高度以及轴承的改进,彻底解决了因测张辊表面划伤而直接导致带钢表面划伤的产品质量问题.","authors":[{"authorName":"陈松","id":"49272655-146f-4cbc-84c1-2b2664d55eec","originalAuthorName":"陈松"},{"authorName":"符寒光","id":"e5d26514-5d18-4a3c-932a-02e08ffd7448","originalAuthorName":"符寒光"}],"doi":"10.3969/j.issn.1001-7208.2002.06.005","fpage":"20","id":"47514943-7c51-4f1e-bf3e-32d27788e620","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"31f17eb1-f1ce-4ccd-acfb-7f4cd9f4fa54","keyword":"酸轧机组","originalKeyword":"酸轧机组"},{"id":"684f41a3-ab59-4919-9359-c7c51e7f6b90","keyword":"测张辊","originalKeyword":"测张辊"},{"id":"73562d3f-7aac-47e8-aa62-9de0e87ad5f2","keyword":"冷轧带钢","originalKeyword":"冷轧带钢"},{"id":"c4f9713a-3335-4538-99ea-8403d4c12ebc","keyword":"表面划伤","originalKeyword":"表面划伤"}],"language":"zh","publisherId":"shjs200206005","title":"冷轧机组测张辊表面划伤的研究","volume":"24","year":"2002"},{"abstractinfo":"升膜蒸发是利用微细槽道对液体的毛细抽吸作用,在强化管外表面覆盖一层薄液膜,进而以薄膜蒸发的形式实现强化换热.本文针对强化管在水中的浸入深度,蒸发压力,加热壁面过热度等因素对升膜蒸发换热性能的影响展开实验研究.实验结果表明随着管外液位的降低升膜蒸发换热系数明显提高,此外,蒸发压力和加热壁面过热度因素对升膜蒸发换热性能也有着显著的影响.","authors":[{"authorName":"杨国忠","id":"257969da-e9c3-4449-b028-eb3c16bb774b","originalAuthorName":"杨国忠"},{"authorName":"王如竹","id":"a0dd81f1-9acc-4efb-aeee-472617c8947b","originalAuthorName":"王如竹"},{"authorName":"夏再忠","id":"3710b111-e74d-407f-a8e7-5b6c11534e68","originalAuthorName":"夏再忠"}],"doi":"","fpage":"280","id":"e5a83960-307a-4e78-8c85-37f133cfaa9a","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"51e021bd-cebf-428c-9285-c4cb824b472b","keyword":"水","originalKeyword":"水"},{"id":"d95692f4-75b1-46e2-a777-6688b962e645","keyword":"强化管","originalKeyword":"强化管"},{"id":"150fd46c-2188-4919-8cfc-7e475c130e3f","keyword":"升膜蒸发","originalKeyword":"升膜蒸发"},{"id":"fa6e86a1-b16b-4dea-a84a-c6baf8cea251","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb200702031","title":"强化管管外升膜蒸发换热特性实验","volume":"28","year":"2007"}],"totalpage":346,"totalrecord":3451}