{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用酶标分析仪,在H2O2存在的情况下,研究了原核生物趋细菌天然合成的磁性纳米颗粒——小体具有内在的类似于过氧化物酶的酶活性能。结果显示,随着缓冲液的pH值、反应温度和H2O2浓度的增加,小体的所有酶活性能皆呈"抛物线"型变化,满足酶学中关于酶催化反应性能的解释。由此得出小体催化反应的最适pH是4.0值,最佳温度是30℃,最佳H2O2浓度是0.28mol/L。随后,进一步考察了小体的酶活稳定性。结果显示在pH值从0.2~12.9变化的不同缓冲液浸泡2h之后的小体的类酶活性保持在60%以上;从4~97℃不同温度孵育小体2h,小体的类酶活性没有明显下降。所有结果表明处理之后的小体仍能保持优异的酶催化稳定性。","authors":[{"authorName":"胡丽丽","id":"307ae313-11c9-41a9-91cd-cf8aa3ed3553","originalAuthorName":"胡丽丽"},{"authorName":"马秋峰","id":"11880bbb-35dc-4dbc-9164-bad5a89511e7","originalAuthorName":"马秋峰"},{"authorName":"解春兰","id":"5bd789f0-add7-461b-aaf5-5181ee112484","originalAuthorName":"解春兰"},{"authorName":"张玉霞","id":"f69b68cd-8508-40cc-9ed9-b8d04794822e","originalAuthorName":"张玉霞"},{"authorName":"聂棱","id":"9c8301d9-c5f6-4d9d-94cd-f82be7161331","originalAuthorName":"聂棱"},{"authorName":"宋涛","id":"186bbb82-153a-42e9-b130-afa7361e5413","originalAuthorName":"宋涛"},{"authorName":"杨文晖","id":"040d32a7-5537-48c8-a0b1-bce5be85e022","originalAuthorName":"杨文晖"}],"doi":"","fpage":"1666","id":"3290f37a-a99d-4254-9296-baad14977ccb","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8b27e126-07d9-4e4f-9c24-feb0bf4b7f5c","keyword":"磁性纳米颗粒","originalKeyword":"磁性纳米颗粒"},{"id":"3960dcda-d0d8-4900-b186-99fc91c63e61","keyword":"小体","originalKeyword":"磁小体"},{"id":"9cc4c1de-b50a-44a7-92a1-9ac6941f3769","keyword":"类酶活性","originalKeyword":"类酶活性"},{"id":"a642d304-7d51-4d22-80ed-a4d80848c48e","keyword":"趋细菌","originalKeyword":"趋磁细菌"}],"language":"zh","publisherId":"gncl201109033","title":"生物无机铁纳米粒子酶活性能研究","volume":"42","year":"2011"},{"abstractinfo":"目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶-凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质,因此生物方法将受到更多的关注.特别介绍了生物合成铁氧体磁性纳米颗粒的研究进展及相关原理,包括生物合成磁性纳米颗粒的可能性、生物基础、生物合成机制、生物有机大分子的调控作用以及生物矿化原理等方面.","authors":[{"authorName":"王琳","id":"ea393242-dc32-41eb-b6fd-592168e29234","originalAuthorName":"王琳"},{"authorName":"李宏煦","id":"2ac5c532-ee1a-49ca-befb-ab85a4c9352b","originalAuthorName":"李宏煦"},{"authorName":"李安","id":"3eb7dbf4-899f-4a49-ae9b-948a191570e7","originalAuthorName":"李安"},{"authorName":"郭云驰","id":"86c92d58-ed58-49f2-953f-8424f5db092b","originalAuthorName":"郭云驰"}],"doi":"","fpage":"18","id":"f827f1e9-6c34-42cd-a84a-267f44f33388","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e0f810a3-528d-4849-bdc1-6b4d3a44fae1","keyword":"磁性纳米颗粒","originalKeyword":"磁性纳米颗粒"},{"id":"544b2cef-f567-4fb0-b026-521ac779db8f","keyword":"生物矿化","originalKeyword":"生物矿化"},{"id":"f9d483eb-cb51-4373-9d07-5c41be4db57d","keyword":"生物诱导","originalKeyword":"生物诱导"},{"id":"a0635214-c87e-4ae0-af54-7aa4b30fddb0","keyword":"趋细菌","originalKeyword":"趋磁细菌"},{"id":"a0444c11-4d20-4f7b-9e9d-f271d10b571d","keyword":"小体","originalKeyword":"磁小体"}],"language":"zh","publisherId":"cldb201019004","title":"铁氧体磁性纳米材料的生物制备及研究进展","volume":"24","year":"2010"},{"abstractinfo":"考察了生物检材中4种苯丙胺类毒品,即苯丙胺(AM)、甲基苯丙胺(MAM)、3,4-亚甲二氧基苯丙胺(MDA)、3,4-亚甲二氧基甲基苯丙胺(MDMA)的液相小体积萃取方法的影响因素;考察了常规体积液相萃取与小体积液相萃取效率,考察了小体积萃取溶剂、萃取体积、待测物浓度对萃取效率的影响;对小体积萃取机制进行了初步的探讨.结果表明,在小体积萃取中,由于有机相液膜的比例大,萃取过程以液膜的吸附作用为主.当水相中待测物浓度很低时,这一萃取方式有明显的富集效果.用这一萃取方式对唾液、毛发中的该类毒品进行了提取,并直接抽取有机相进行GC分析或衍生化后GC分析.当采用GC/MS中SIM方式检测时,唾液中的最低检测限为5×10-8 g/mL.毛发中的毒品经过MBTFA三氟乙酰化后,最小检测限为5×10-11 g/mg毛发.实验数据证明,此提取方法得到的各项定量参数均符合分析要求.方法简便、灵敏、经济、快速,适用于生物检材中该类毒品的分析.","authors":[{"authorName":"孟品佳","id":"2a83ae3a-7c4d-4ef6-8b9f-60b9b860d531","originalAuthorName":"孟品佳"},{"authorName":"王燕燕","id":"c0c5d49c-7571-47af-885f-66ce2080361c","originalAuthorName":"王燕燕"},{"authorName":"朱丹","id":"85f48481-1b7f-4c05-b6db-dca058f33e09","originalAuthorName":"朱丹"}],"doi":"10.3969/j.issn.1000-0518.2008.12.016","fpage":"1448","id":"cdc12ce5-b68e-4318-a0bd-661c67776a85","issue":"12","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"32b35a48-9705-4c13-abe5-f32a22a616b3","keyword":"小体积液相萃取","originalKeyword":"小体积液相萃取"},{"id":"64e0b303-a6c1-4749-8585-68d05eeaebb1","keyword":"苯丙胺毒品","originalKeyword":"苯丙胺毒品"},{"id":"102bfaad-b501-4789-8b8c-413042fb6a9d","keyword":"唾液","originalKeyword":"唾液"},{"id":"46114696-10f8-45ae-8d66-01452581345c","keyword":"毛发","originalKeyword":"毛发"},{"id":"68b2f376-c6b8-4f6c-92fe-cf9d60b00fc4","keyword":"GC/MS","originalKeyword":"GC/MS"}],"language":"zh","publisherId":"yyhx200812016","title":"生物样品中苯丙胺类毒品的小体积液相萃取及GC/MS分析","volume":"25","year":"2008"},{"abstractinfo":"以尺寸不规则的Y1Cr18Ni9不锈钢片为基底,研究了在约2 mL镀液的条件下,化学镀镍工艺中主盐与还原剂浓度之比、pH、反应时间及反应温度对镀层沉积速率的影响.结果表明:当c(Ni2+):c(H2PO2-)=0.75:1,pH为6,温度为77℃,反应2 h的条件下,镀层沉积速率快,含镍量高于72%,且颗粒分布均匀、密实.","authors":[{"authorName":"胡睿","id":"4cae21b6-30aa-4399-84d3-3cd1ccf77b35","originalAuthorName":"胡睿"},{"authorName":"张华明","id":"e9ad6993-25aa-420d-8cdc-a966a96ca259","originalAuthorName":"张华明"},{"authorName":"熊晓玲","id":"f812d8ad-206d-4b17-9982-f228eb4b5378","originalAuthorName":"熊晓玲"},{"authorName":"王关全","id":"b9ab6893-cdba-45b8-b61f-3add8853a142","originalAuthorName":"王关全"},{"authorName":"杨玉青","id":"54fe5d76-2a60-48b4-a307-ed4c2fbccfcc","originalAuthorName":"杨玉青"},{"authorName":"刘国平","id":"2fa6ba4f-258a-4ea2-af18-d87c6dc73722","originalAuthorName":"刘国平"}],"doi":"","fpage":"27","id":"8dfe525e-1d5f-402a-925c-2e68c2417b16","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"62034fc3-05b4-45ed-8eb7-ddb0b324f532","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"08527d8b-2183-4f38-86bb-04729e9701c2","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"c9a6a679-a0ab-445f-9f4f-078e7c3ab7d2","keyword":"酸度","originalKeyword":"酸度"},{"id":"0d9648fb-5e46-415f-96bb-353bea96ad33","keyword":"沉积速率","originalKeyword":"沉积速率"}],"language":"zh","publisherId":"ddyts200908008","title":"小体积化学镀镍工艺","volume":"28","year":"2009"},{"abstractinfo":"介绍了软材料的高温应用及其使用要求,简述了温度对基本参数和技术参数的影响以及高温应用各类软材料的发展和使用现状.","authors":[{"authorName":"董哲","id":"5993d47b-366c-4a92-846b-2fab5de0869f","originalAuthorName":"董哲"},{"authorName":"陈国钧","id":"4b8cede1-b122-4f65-bc6b-afa7a7516731","originalAuthorName":"陈国钧"},{"authorName":"彭伟锋","id":"dd433bb2-4469-495b-b3e8-0b02000fa1bd","originalAuthorName":"彭伟锋"}],"doi":"10.3969/j.issn.1005-8192.2005.01.009","fpage":"35","id":"5ba163e8-c11d-4655-a5b7-5e62900af20f","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"4715bcb3-8916-46ca-9d28-91372b89eeb7","keyword":"高温","originalKeyword":"高温"},{"id":"e4242482-c6d8-407d-bd0b-02354024a6d4","keyword":"软材料","originalKeyword":"软磁材料"},{"id":"ddc5d953-5ae1-453a-9978-ad4008129046","keyword":"参数","originalKeyword":"磁参数"}],"language":"zh","publisherId":"jsgncl200501009","title":"高温应用软材料","volume":"12","year":"2005"},{"abstractinfo":"流变液是一种新型的智能材料.流变液的快速流变性能使其广泛用于制造减振阻尼器、制动器、离合器、抛光装置和液压阀等.本文主要介绍了流变液在减振器上的应用.","authors":[{"authorName":"李红云","id":"964b6bed-ccb4-465b-9a23-6880864c5e21","originalAuthorName":"李红云"},{"authorName":"柳学全","id":"006d5a45-0eab-443c-b027-d5c07af70cbd","originalAuthorName":"柳学全"},{"authorName":"滕荣厚","id":"6535ee8d-aebc-4c6c-8f6b-2bf5aca13646","originalAuthorName":"滕荣厚"},{"authorName":"霍静","id":"c41c7d31-32db-4c16-bd40-286345a5e338","originalAuthorName":"霍静"},{"authorName":"贾成厂","id":"ff0e37ff-aeac-4fa7-9320-86084d62c40e","originalAuthorName":"贾成厂"}],"doi":"10.3969/j.issn.1005-8192.2005.02.010","fpage":"38","id":"9d3736e9-aa1c-46c1-8771-74dff6be01f4","issue":"2","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"e55ff34a-fdc2-4335-94e8-4831ba9b6d8b","keyword":"减振器","originalKeyword":"减振器"},{"id":"a2cdff4d-ef76-47e4-847a-15c1e89f92c1","keyword":"流变液","originalKeyword":"磁流变液"},{"id":"1a318501-bcd5-4194-8e76-2e96f168f31a","keyword":"智能材料","originalKeyword":"智能材料"}],"language":"zh","publisherId":"jsgncl200502010","title":"流变液减振器","volume":"12","year":"2005"},{"abstractinfo":"基于MEMS技术的微型通门式敏感器是磁场测量技术和微机电系统(MEMS)技术交叉研究领域的一个热点,在航空航天领域特别是在纳型/皮型卫星技术中有着重要的应用.本文介绍了该类敏感器所运用的通门效应的原理.从芯、线圈和整体结构布局等方面分析了现有的各种微型通门式敏感器的结构特征.并依据通门原理和各种微型通门式敏感器的结构特点,设计了一种两轴微型通门式敏感器.这种新型的敏感器具有对称结构、闭合磁路、差动形式、柔性连接等显著特点.","authors":[{"authorName":"杨建中","id":"9806fd84-eb70-4e79-9a59-02189fca603d","originalAuthorName":"杨建中"},{"authorName":"尤政","id":"9b500d1f-da20-47da-a5a1-2ff8f1314d4e","originalAuthorName":"尤政"},{"authorName":"刘刚","id":"f53962cc-7487-4781-989b-f5d4a07aa227","originalAuthorName":"刘刚"},{"authorName":"康春磊","id":"93da635d-341f-4510-afc0-44ad53b70729","originalAuthorName":"康春磊"},{"authorName":"田扬超","id":"6f410f8b-dfeb-42c3-aa97-141d47ef69f8","originalAuthorName":"田扬超"}],"doi":"10.3969/j.issn.1007-4252.2008.02.007","fpage":"313","id":"c5316752-db04-4821-8217-72bcc025c1f7","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"2d2e310f-5e5c-4423-b304-9eba8906bfad","keyword":"微机电系统(MEMS)","originalKeyword":"微机电系统(MEMS)"},{"id":"296ef3ef-b0dc-4950-be33-cf80c5ddf929","keyword":"通门","originalKeyword":"磁通门"},{"id":"28b7b75d-85a3-4f43-8a8b-43eb1d59581f","keyword":"传感器","originalKeyword":"磁传感器"},{"id":"b1a8d30e-503c-47df-b1c0-402881f86cf7","keyword":"传感器设计","originalKeyword":"传感器设计"}],"language":"zh","publisherId":"gnclyqjxb200802007","title":"微型通门式敏感器(MEMSMag)","volume":"14","year":"2008"},{"abstractinfo":"设计了一种聚氨酯基流变弹性体,利用设计的致力学性能测试装置,对剪切状态下流变弹性体的流变效应进行了系统的测试.结果表明,相对流变效应随着外加磁场强度的增大而增大,随着激励振幅的增大而减小.预加载位移的大小直接决定这相对流变效应,过大的变形会导致相对流变效应急剧减小.激励频率对相对流变效应影响不大.","authors":[{"authorName":"黄炼","id":"b9cedb9c-e24b-4853-86cf-62434fd46094","originalAuthorName":"黄炼"},{"authorName":"查长松","id":"fb7d9b5f-0b15-4030-be35-f800bcf0fdf9","originalAuthorName":"查长松"}],"doi":"10.14136/j.cnki.issn1673-2812.2016.01.028","fpage":"139","id":"8bbdf67a-4f64-4cfe-9614-e99f3c0f42c0","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b6ced0e8-1b6e-4b1f-8b3f-5fc57733ed8e","keyword":"流变弹性体","originalKeyword":"磁流变弹性体"},{"id":"73ee3383-2d86-4f26-b116-063928f2c5bc","keyword":"流变效应","originalKeyword":"磁流变效应"},{"id":"425f7f75-3b60-4c91-969f-4721946d55dd","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b679d234-6ae0-4251-80fa-9ffcf4447f5f","keyword":"剪切状","originalKeyword":"剪切状"}],"language":"zh","publisherId":"clkxygc201601028","title":"流变弹性体的致性能","volume":"34","year":"2016"},{"abstractinfo":"采用球磨制粉和模压成型方法制备了铁硅铝粉芯,并研究了其频率特性和直流叠加特性.结果表明,在测量的频率范围内(1~500 kHz),铁硅铝粉芯有效磁导率基本保持不变,而品质因数随频率的增加而增大,达到峰值后缓慢下降.在相同频率下,随着粉料粒度的减小,粉芯的有效磁导率降低,品质因数增加.铁硅铝粉芯具有良好的直流叠加特性,当直流偏磁场强度为1000e时,其有效磁导率变化率小于50%,且减小粉粒度可改善粉芯的直流叠加特性.","authors":[{"authorName":"金丹","id":"557d37ba-62df-40c5-bba6-88cacc9c2664","originalAuthorName":"金丹"},{"authorName":"孙可为","id":"e8fc46b4-43dd-468b-80ab-2d0b71b0b81d","originalAuthorName":"孙可为"}],"doi":"10.3969/j.issn.1003-1545.2009.01.007","fpage":"24","id":"9d2d2668-71d3-47ea-afe2-685768d3d0b3","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"fa42ab1d-01bd-4e0c-9806-4581ee06ca1c","keyword":"粉芯","originalKeyword":"磁粉芯"},{"id":"9cd73fd7-e5a2-4607-a9ce-de5e79b9d6da","keyword":"品质因数","originalKeyword":"品质因数"},{"id":"8f0f5f8b-4e00-4671-8447-22190f953289","keyword":"有效磁导率","originalKeyword":"有效磁导率"},{"id":"9bdc5d0d-7ce0-4910-8954-a7876e578d32","keyword":"直流叠加特性","originalKeyword":"直流叠加特性"}],"language":"zh","publisherId":"clkfyyy200901007","title":"铁硅铝粉芯的特性研究","volume":"24","year":"2009"},{"abstractinfo":"阐述了表征畴结构的重要意义,介绍了目前常用的10余种铁畴观察方法的工作原理、分辨率和它们的优缺点,并列出了这些畴表征技术的一些典型实验结果.较为详细地介绍了本课题组自主研发的扫描电声显微镜的发展简史、系统总体结构及其在畴观察方面的应用.","authors":[{"authorName":"宋红章","id":"1d676921-3495-4815-ae64-7ad1494767b4","originalAuthorName":"宋红章"},{"authorName":"曾华荣","id":"6e172b42-ddab-4a51-a023-a0842f6d5f34","originalAuthorName":"曾华荣"},{"authorName":"李国荣","id":"56658442-5a61-4314-8c3f-9c16d94807d9","originalAuthorName":"李国荣"},{"authorName":"殷庆瑞","id":"d243d698-87a5-45a3-b568-79c84396dcae","originalAuthorName":"殷庆瑞"},{"authorName":"胡行","id":"c9d4fd33-6274-41db-8b4b-2818297fbf9e","originalAuthorName":"胡行"}],"doi":"","fpage":"106","id":"ae14213a-3035-4de5-acbd-4ee955ed8c8b","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f310e3cb-6b01-4734-903e-ea06c0ce1f6d","keyword":"畴","originalKeyword":"磁畴"},{"id":"1a3d249e-9685-4b8d-9b03-a7be2abe35c3","keyword":"观察方法","originalKeyword":"观察方法"},{"id":"85d3c141-b4a5-4b4b-bfea-dd47eccbe0c9","keyword":"扫描电声显微镜","originalKeyword":"扫描电声显微镜"}],"language":"zh","publisherId":"cldb201017022","title":"畴的观察方法","volume":"24","year":"2010"}],"totalpage":478,"totalrecord":4780}