{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"合成了数均分子量(n)不同的聚乙二醇型端氨基聚氨酯(ATPU2),并用它与E-44环氧树脂配成了综合力学性能好的胶粘剂.用DSC、FT-IR、SEM分别表征了ATPU2/E-44胶粘剂的固化过程、固化产物的结构以及冲击断面形貌,测试了胶粘剂的柔韧性、附着力和剥离强度等力学性能与ATPU结构的关系.结果表明,ATPU2/E-44胶粘剂的中温固化主要是通过端氨基与环氧基反应完成的;它具有的冲击强度高等优异的力学性能与其固化后的交联网络形成了一种由环氧刚性链段和柔性聚乙二醇链段组成的两相结构和产生断裂时能形成微纤结构密切相关.","authors":[{"authorName":"孙涛","id":"9065cd20-3198-40a0-ad21-529130c70691","originalAuthorName":"孙涛"},{"authorName":"官建国","id":"9393af4f-c51d-4743-8e31-708d61a87d5c","originalAuthorName":"官建国"},{"authorName":"余剑英","id":"7b24b375-836d-4e0a-87bb-fadce1948b34","originalAuthorName":"余剑英"},{"authorName":"苏良碧","id":"a2338e63-e860-436a-af0c-93cdac1db9ce","originalAuthorName":"苏良碧"}],"doi":"","fpage":"117","id":"0e22de73-88a7-4530-97b6-fa08fbc71f73","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"82e556a2-e572-43b9-905e-9abfbf5fb3bb","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"b6f0b2bf-fc37-4683-85e6-383a84cc7797","keyword":"端胺基聚氨酯","originalKeyword":"端胺基聚氨酯"},{"id":"ff497c0e-5ca6-40a9-8867-17bc36bd7651","keyword":"柔性固化剂","originalKeyword":"柔性固化剂"},{"id":"fc0022f6-6968-4fdb-8ed5-b38025984bde","keyword":"增韧改性","originalKeyword":"增韧改性"}],"language":"zh","publisherId":"gfzclkxygc200501028","title":"端氨基聚氨酯的合成及增韧环氧树脂的研究","volume":"21","year":"2005"},{"abstractinfo":"以甲胺、正丁胺、无水哌嗪和N-甲基二乙醇胺为起始剂,在氢氧化钾催化下,与环氧乙烷聚合得到一系列功能型含叔胺基聚醚(以下简称为胺基聚醚),并用端基滴定法与蒸气压渗透法进行了结构表征.以胺基聚醚为软段,MDI和BD为硬段,在辛酸亚锡催化下,用\"一步法\"可获得胺基聚醚聚氨酯.适当离子化后,即可得到软段型聚氨酯离聚物.这种材料在水性涂料、生物医用材料、高分子配合物和高分子固态电解质等方面具有广阔的科研与应用前景.","authors":[{"authorName":"魏欣","id":"4086e9b6-e7aa-43a1-9898-d707f317105b","originalAuthorName":"魏欣"},{"authorName":"应燕","id":"7e4652d1-9b05-4b7b-8ab6-779d3eb3e5b9","originalAuthorName":"应燕"},{"authorName":"余学海","id":"5318dfab-957f-4647-86de-b02bc5fa8e77","originalAuthorName":"余学海"},{"authorName":"钱路生","id":"c884c9c8-3128-4fcf-87e9-7d6eb4a09444","originalAuthorName":"钱路生"},{"authorName":"骆光平","id":"54a59b82-aeb5-4e01-b5e9-a763ae0f5df2","originalAuthorName":"骆光平"},{"authorName":"浦仁生","id":"fdaeef6d-759a-4a00-8be2-510c86be663b","originalAuthorName":"浦仁生"}],"doi":"","fpage":"56","id":"ba78bdb1-d296-475e-82f6-263e8ca23626","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9fc48988-ab3a-4acd-8a65-57f28d4972c9","keyword":"胺基聚醚","originalKeyword":"胺基聚醚"},{"id":"248ec65d-ee70-4d12-b438-6380a26e2037","keyword":"一步法","originalKeyword":"一步法"},{"id":"2d4e49c7-a789-4947-b76f-302af116480b","keyword":"软段型聚氨酯离聚物","originalKeyword":"软段型聚氨酯离聚物"}],"language":"zh","publisherId":"gfzclkxygc200001017","title":"含叔胺基的聚醚的开发和聚氨酯离聚物的合成工艺","volume":"16","year":"2000"},{"abstractinfo":"利用傅里叶红外光谱技术研究了催化剂及反应温度对聚氨酯封端反应动力学的影响,研究表明三乙胺能加快对甲基苯酚封端聚氨酯预聚物反应的速度;加入0.2%三乙胺催化时,该反应活化能由不加催化剂时的15.16kJ/mol降低到5.4kJ/mol。未加催化剂时,该封端反应为二级反应,加入三乙胺催化剂后,该封端反应为一级反应。","authors":[{"authorName":"孙卫红","id":"09802470-3d46-4729-a5ce-5f1473500c61","originalAuthorName":"孙卫红"},{"authorName":"晏欣","id":"207ab9e8-bd39-4bdf-83ea-c2f524d3c135","originalAuthorName":"晏欣"},{"authorName":"朱锡","id":"d78bbac5-9234-4674-a5a2-073e6f5a7e66","originalAuthorName":"朱锡"}],"doi":"","fpage":"877","id":"8f2a01ae-cb3c-40b0-9d6b-d311203f327d","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e75cefe9-2e66-4992-a583-85426b889113","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"94fcf113-2548-497d-a07d-2726d22123dd","keyword":"对甲基苯酚","originalKeyword":"对甲基苯酚"},{"id":"4bcef12c-c5fc-4020-843e-6adc6df71304","keyword":"反应动力学","originalKeyword":"反应动力学"},{"id":"bca179f4-36dd-4e2c-9f0d-984b69216c9b","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"6885d2e9-6dab-4f18-a5b1-fe15452b4f6b","keyword":"活化能","originalKeyword":"活化能"}],"language":"zh","publisherId":"gncl201207016","title":"聚氨酯封端反应动力学研究","volume":"43","year":"2012"},{"abstractinfo":"以聚酯多元醇、甲苯二异氰酸酯和二羟甲基丙酸为主要原料,丙烯酸单体封端,加入改性剂三羟甲基丙烷脱水蓖麻油酸酯(TMPDCO),制备出稳定的水性聚氨酯分散体。涂膜耐化学品性和凝胶含量测定说明,TMPDCO的加入增加了涂膜的交联度,提高了涂膜的耐化学品性。差示扫描量热法测试表明,加入封端剂增加了涂膜交联度,涂膜玻璃化转变温度明显提高。力学性能测试说明,聚酯作为软段的水性聚氨酯树脂较聚醚型耐水性好。X射线衍射分析说明,随着硬段规整度的增加,衍射峰中心依次向高角度偏移。红外表征说明,不同硬段合成水性聚氨酯的氨基甲酸酯键波数不同。","authors":[{"authorName":"杜娟","id":"e74dee60-ad3e-4215-b299-898bcfdc9845","originalAuthorName":"杜娟"},{"authorName":"李再峰","id":"5c326635-0d5a-4fb4-86eb-2b7f0d69ba60","originalAuthorName":"李再峰"}],"doi":"","fpage":"75","id":"a1615644-0fe4-4995-aab8-6fe79b86c9f0","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6e0bf063-a9be-4a63-82a3-7ecbe17a99bc","keyword":"封端型水性聚氨酯","originalKeyword":"封端型水性聚氨酯"},{"id":"267818bb-53a7-4af4-bd35-79ed3527af30","keyword":"结构","originalKeyword":"结构"},{"id":"57f5e952-acc0-4902-bb2c-c9d03fbdef13","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gfzclkxygc201203020","title":"封端型水性聚氨酯树脂的结构与性能","volume":"28","year":"2012"},{"abstractinfo":"以对苯二酚二对苯甲酸酯(HQB)、N,N′-二(ω-羟乙基)苯均四甲酰二亚胺(BHDI)、甲苯二异氰酸酯(TDI)为单体,利用溶液缩聚方法,合成了含有亚胺基的三种液晶聚氨酯(HBLCP)。采用红外光谱(FT-IR)、差示扫描量热(DSC)、偏光显微镜(POM)、X射线衍射(WAXD)和热重分析(TGA)等手段对液晶聚氨酯进行表征。结果表明,该类液晶聚氨酯的熔点(Tm)和各向同性温度(Ti)随着HQB含量的增加而提高;POM观察表明,在液晶态温度区间170℃~190℃范围内显示液晶行为,并呈现向列相织构;其广角X射线衍射图在2θ角为15°~32°范围内有一组强度不等的衍射峰,所合成的液晶聚氨酯具有较高的热稳定性。","authors":[{"authorName":"黄志义","id":"6dd2f14f-98bf-48f5-8f9c-53ad944cccb6","originalAuthorName":"黄志义"},{"authorName":"陆绍荣","id":"98f1b70a-d296-40d2-a13a-11d8f5837409","originalAuthorName":"陆绍荣"},{"authorName":"阳志有","id":"36c9bf2f-32f2-4201-9287-83b371f24f96","originalAuthorName":"阳志有"},{"authorName":"于春贺","id":"3c8a1d0a-ab9c-4fea-802d-9dd5271ad4be","originalAuthorName":"于春贺"},{"authorName":"罗崇禧","id":"31cf9d97-f237-4c2a-b03e-d4f7dc6720c2","originalAuthorName":"罗崇禧"}],"doi":"","fpage":"9","id":"0756cf38-9bbb-4dca-be92-ab49db41799d","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b7f3bcef-196b-4ddd-a88f-8cb1a09f6d23","keyword":"液晶聚氨酯","originalKeyword":"液晶聚氨酯"},{"id":"00d506b2-e960-4dd8-84ac-cd15a456a3d2","keyword":"织构","originalKeyword":"织构"},{"id":"27689466-de1e-4038-aa41-5ae2d60ce071","keyword":"合成","originalKeyword":"合成"},{"id":"9668129d-f23f-4de4-8e20-d269efa42ff0","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"gfzclkxygc201202003","title":"含亚胺基热致性液晶聚氨酯的合成与表征","volume":"28","year":"2012"},{"abstractinfo":"以端羟基活性不同的聚酯二醇和四甲基苯二甲基异氰酸酯(TMXDI)为主要原料,二羟甲基丙酸(DMPA)为亲水单体,乙二胺为扩链剂,制备了聚酯型水性聚氨酯乳液.采用万能材料试验机、凝胶渗透色谱仪和差热分析仪等仪器研究了聚酯二醇端羟基活性对水性聚氨酯乳液膜力学性能的影响.实验结果表明:当聚酯二醇端羟基为伯、仲二羟基或仲二羟基时,其水性聚氨酯乳液膜存在膜脆、力学性能较差等问题;而端羟基为伯二羟基时,则不存在上述问题,其乳液膜的力学性能较好,能够达到应用要求;说明聚酯二醇的端羟基活性对聚酯型水性聚氨酯的力学性能有较大影响.","authors":[{"authorName":"孙彦璞","id":"77447c07-4509-4166-a772-5ea895b42ea5","originalAuthorName":"孙彦璞"}],"doi":"10.3969/j.issn.0253-4312.2009.02.005","fpage":"15","id":"8bdc10fb-ee33-42df-82c3-285cc5e30ac8","issue":"2","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"16c99f88-ed35-4d24-b395-a2d427e1897b","keyword":"端羟基活性","originalKeyword":"端羟基活性"},{"id":"355eee13-5c9a-44fa-b258-a5dcb4dbe893","keyword":"聚酯型水性聚氨酯","originalKeyword":"聚酯型水性聚氨酯"},{"id":"3a744756-79a1-4fcc-ad66-48525e945df7","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"tlgy200902005","title":"聚酯二醇端羟基活性对聚酯型水性聚氨酯力学性能的影响","volume":"39","year":"2009"},{"abstractinfo":"通过在不饱和聚酯树脂中加入活性端基聚氨酯橡胶来降低树脂的体积收缩.树脂固化前,橡胶与不饱和聚酯树脂相溶性好;树脂固化时橡胶中的不饱和双键反应可参与反应,并呈一定粒径的胶粒析出.本文研究了几种活性端基聚氨酯橡胶对不饱和聚酯树脂收缩控制的影响.","authors":[{"authorName":"葛曷一","id":"8cf0cd33-e012-4d17-b85c-0a49ab820d29","originalAuthorName":"葛曷一"},{"authorName":"柳华实","id":"1a40d8c9-3bad-4548-bc3a-eea367034001","originalAuthorName":"柳华实"},{"authorName":"关瑞芳","id":"bc9c52f2-1e5c-4787-a16b-f6f24cd3de5a","originalAuthorName":"关瑞芳"},{"authorName":"王继辉","id":"db9b2c89-8438-4b5e-b2db-72dfeebc1e80","originalAuthorName":"王继辉"}],"doi":"10.3969/j.issn.1003-0999.2004.03.007","fpage":"25","id":"5de86825-dab0-4def-a209-015f582c3bfa","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3c9edc29-7856-4446-9192-d5b8116746f5","keyword":"不饱和聚酯树脂","originalKeyword":"不饱和聚酯树脂"},{"id":"7df07789-1a03-462e-b081-cc0a5b7be079","keyword":"活性端基聚氨酯橡胶","originalKeyword":"活性端基聚氨酯橡胶"},{"id":"0f3d245e-3b94-4950-a714-d33b4c7f8962","keyword":"相分离","originalKeyword":"相分离"},{"id":"29b90530-0444-486e-a94f-0f76cb2487ed","keyword":"收缩率","originalKeyword":"收缩率"}],"language":"zh","publisherId":"blgfhcl200403007","title":"活性端基聚氨酯橡胶改性不饱和聚酯树脂的研究(Ⅱ)","volume":"","year":"2004"},{"abstractinfo":"在准确测定水性聚氨酯分散体端氨基含量的基础上,采用二异氰酸酯对分散状态下的水性聚氨酯分散体进行二次扩链,研究了不同条件下二次扩链前后分散体端氨基含量、涂膜力学性能以及分散体粒径的变化.研究表明:二次扩链剂可以与水性聚氨酯分散体的端氨基反应;二次扩链可大幅度提高涂膜拉伸强度,而涂膜模量略有上升,说明反应形成扩链而非交联;扩链后分散体粒径略有增加,表明二次扩链不影响分散体稳定性.","authors":[{"authorName":"刘娜","id":"b5ead1aa-e89f-439f-8dd1-a59b1588285a","originalAuthorName":"刘娜"},{"authorName":"王武生","id":"e004be77-34d0-408e-b73a-487625aafa0a","originalAuthorName":"王武生"},{"authorName":"马乃宇","id":"79e097ba-e535-4a52-9739-19f5dc1fe47d","originalAuthorName":"马乃宇"},{"authorName":"张少朋","id":"4ec57cdc-0039-48e0-b929-fb043d2f0f2e","originalAuthorName":"张少朋"},{"authorName":"彭晓萌","id":"c84f2316-15ff-4e4c-bec6-ccac66d9485b","originalAuthorName":"彭晓萌"}],"doi":"","fpage":"42","id":"f04c2dc1-1f6d-4709-93d1-c1088bbf3954","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"8ea713c1-24e6-40d9-b078-6cf5bf9a35ca","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"366a2c8f-0b70-4215-9c89-f322b27108c7","keyword":"二次扩链","originalKeyword":"二次扩链"},{"id":"eaea8b39-8b0f-448e-9c7c-9bf70ca2a4ec","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"8f10b878-4232-4731-8728-e570082e4dc6","keyword":"平均粒径","originalKeyword":"平均粒径"}],"language":"zh","publisherId":"tlgy201504010","title":"基于水性聚氨酯端氨基测定的二次扩链研究","volume":"45","year":"2015"},{"abstractinfo":"用硬脂酸对超支化水性聚氨酯(WHBPU)进行封端,得到了硬脂酸封端的超支化水性聚氨酯(SWHBPU).研究了硬脂酸用量对封端效率的影响,利用红外光谱、核磁共振碳谱以及官能度分析,对WHBPU和SWHBPU的结构进行了表征,并对其热性能进行了测试.结果表明,硬脂酸过量40%时,产物羟值降低至30.09 mg KOH/g;WHBPU和SWHBPU具有大量支化结构;与WHBPU相比,SWHBPU具有更高的起始分解温度和更低的Tg.","authors":[{"authorName":"田星","id":"eed0fa89-f0cf-4e6a-9677-95efea388ef4","originalAuthorName":"田星"},{"authorName":"李杰","id":"ce70991b-cd8b-49aa-9909-70ec116d0d1c","originalAuthorName":"李杰"},{"authorName":"罗运军","id":"9d6af95d-0f1d-4684-b823-27b14ef7eb14","originalAuthorName":"罗运军"}],"doi":"","fpage":"25","id":"0077147b-3ebb-4144-ad78-a86ea1724068","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e25afc80-68ea-441f-9c79-b3c6e15924bd","keyword":"超支化","originalKeyword":"超支化"},{"id":"6f65faa8-d4e1-4a85-b041-f17905c39e67","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"08b14795-d361-4f31-9507-87a838e6343d","keyword":"热性能","originalKeyword":"热性能"}],"language":"zh","publisherId":"gfzclkxygc201304007","title":"硬脂酸封端超支化水性聚氨酯的合成及表征","volume":"29","year":"2013"},{"abstractinfo":"通过Micheal加成和胺解的交替反应,制得末端基为氨基的聚酰胺-胺型树状分子(PAMAM);研究了第7代PAMAM(G7-NH2)在制备铜纳米粒子过程中的模板作用,通过紫外光谱和透射电镜表征了铜粒子的形成过程以及所得铜粒子的大小.结果表明,铜离子不仅与G7-NH2内部叔胺基形成络合物,还与树状分子外部的伯胺基形成络合物;在得到铜粒子的过程中,G7-NH2具有内模板和外模板作用,铜纳米粒子的尺寸随着铜离子与G7-NH2浓度比例的提高而增大;同时,由于铜纳米粒子为G7-NH2模板所包裹,使其在水中具有良好的分散均匀性和稳定性.但在有氧条件下,铜粒子很容易被氧化为G7-NH2(Cu2+)n络合离子.","authors":[{"authorName":"魏秀珍","id":"47b3dd00-8b30-4e59-8375-6afd3e56e9bf","originalAuthorName":"魏秀珍"},{"authorName":"朱宝库","id":"ec769247-ccc8-4844-8b9b-168bce66ec02","originalAuthorName":"朱宝库"},{"authorName":"谢曙辉","id":"9aef473e-4827-4d90-b6fa-bf371c14caf9","originalAuthorName":"谢曙辉"},{"authorName":"徐又一","id":"6579e2e0-2ca1-469e-b4ce-efc3776f7a6f","originalAuthorName":"徐又一"}],"doi":"","fpage":"1242","id":"ca182145-516e-4269-9273-9a53dc360647","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f0358734-2049-4bc7-9376-faa4cc5f4d73","keyword":"树状分子","originalKeyword":"树状分子"},{"id":"953f9eb9-6628-48df-9ccb-3c4a8ac1e47c","keyword":"PAMAM","originalKeyword":"PAMAM"},{"id":"4bd918c8-0faf-4ea7-8810-98ff8ec81f66","keyword":"模板作用","originalKeyword":"模板作用"},{"id":"6d8f58b5-16d3-4aa0-9a90-5c6320632cf2","keyword":"铜粒子","originalKeyword":"铜粒子"},{"id":"c25f3673-ab08-4ca4-a8b2-298bc5add9c0","keyword":"稳定化","originalKeyword":"稳定化"}],"language":"zh","publisherId":"gncl200508031","title":"胺基端基树状分子在铜纳米粒子形成过程中的模板及稳定化作用","volume":"36","year":"2005"}],"totalpage":448,"totalrecord":4472}