{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"空载状态下,通过对两种外循环型分解炉系统的阻力特性进行冷模实验研究,得出结论:分解炉截面风速为6.0~8.0 m/s时,卧式旋风的压力损失约为80~200 Pa,旋流分离器的压力损失约为600~1180 Pa;外循环式Ⅰ型分解炉系统中\"分解炉+卧式旋风\"的压力损失比Ⅱ型外循环分解炉系统中\"分解炉+旋流分离器\"的压力损失约低300~600 Pa,从而具有较好的阻力特性.","authors":[{"authorName":"冯云","id":"422f1fa2-41fb-4043-abea-f5ec0f8de9ca","originalAuthorName":"冯云"},{"authorName":"陈延信","id":"22a972f0-57ac-418c-a8eb-98f4d23e03c4","originalAuthorName":"陈延信"}],"doi":"","fpage":"835","id":"c4ac3636-8a64-4a17-b100-b1a4a15d8c18","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e61fe5b7-0d4a-477b-b1a5-3ce988296503","keyword":"外循环型分解炉","originalKeyword":"外循环型分解炉"},{"id":"bdf5440b-4a39-4cac-b38a-0d77ff782a23","keyword":"卧式旋风","originalKeyword":"卧式旋风筒"},{"id":"430ed9be-8576-4188-8dde-5f0fdea11bca","keyword":"旋流分离器","originalKeyword":"旋流分离器"},{"id":"426038b8-d126-4003-a93d-2c9e3ab91ea1","keyword":"阻力损失","originalKeyword":"阻力损失"}],"language":"zh","publisherId":"gsytb200904040","title":"外循环型分解炉系统阻力特性的冷模实验研究","volume":"28","year":"2009"},{"abstractinfo":"以理论研究为基础,通过冷模试验研究了不同操作条件下旋风分离器压力损失的变化规律,开发设计了一种针对旋风分离器的内高效减阻装置,并对安装内减阻罩的旋风分离器的阻力损失和分离效率进行了试验研究,探讨了不同入口风速、不同固气比条件对旋风分离器的性能影响.对结果进行了理论分析,结果表明:对于相同规格的旋风分离器,内减阻罩能起到优化旋风分离器阻降且把分离效率控制在合理数值范围内的作用,不同风速,不同固气比条件下,内减阻罩的最大减阻幅度为43.36%,而分离效率最大降幅只有8.78%.","authors":[{"authorName":"刘文欢","id":"9706ab2c-a509-4987-8d3d-f4616ab32099","originalAuthorName":"刘文欢"},{"authorName":"徐品晶","id":"07281200-783e-46e4-b2a5-a3801ef1cce7","originalAuthorName":"徐品晶"},{"authorName":"陈延信","id":"113b39a1-0722-4222-876a-68ab43d704f5","originalAuthorName":"陈延信"},{"authorName":"胥明琳","id":"b168b238-8ffb-418b-971d-ce2bd740df95","originalAuthorName":"胥明琳"}],"doi":"","fpage":"290","id":"f6aff3df-9aac-4967-a69a-47b8cbed59b6","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"845fd9fd-3f43-4c43-b400-92ee22ec0485","keyword":"旋风分离器","originalKeyword":"旋风分离器"},{"id":"202047a1-f085-42df-8356-129439803e2a","keyword":"阻降","originalKeyword":"阻降"},{"id":"3ca765a7-4f66-487c-b9f6-7be35add4342","keyword":"内减阻罩","originalKeyword":"内筒减阻罩"},{"id":"0e99a347-5494-4a29-b1bb-863796d4b07a","keyword":"分离效率","originalKeyword":"分离效率"},{"id":"18110a7b-7572-48f7-97af-b833f8be0dc2","keyword":"固气比","originalKeyword":"固气比"}],"language":"zh","publisherId":"gsytb201501053","title":"旋风分离器内减阻装置的试验研究","volume":"34","year":"2015"},{"abstractinfo":"采用Fluent软件模拟某5000 t/d水泥熟料生产线C1~C5级旋风气相冷流场的速度和压力.模拟过程中气相冷流场采用RNG k-ε湍流模型.结果表明,该生产线的旋风结构合理,旋风内气体流动符合流体运动规律;旋风内气体速度从上往下逐渐减小;旋风内静压值沿径向由外向内逐渐降低;内的中心轴线附近静压最低,出现负值.","authors":[{"authorName":"董立龙","id":"445d389f-57d0-43e9-9f7b-abb83ea84bd1","originalAuthorName":"董立龙"},{"authorName":"耿宗俊","id":"76fb4326-aced-4ad8-92bb-feeac21ad50a","originalAuthorName":"耿宗俊"},{"authorName":"赵蔚琳","id":"3f3b0d44-b19d-48dd-9273-4f9ea7cf4620","originalAuthorName":"赵蔚琳"}],"doi":"","fpage":"1497","id":"46d6ec3a-4602-4475-a9fb-74cdcebb215d","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"20270f0e-78e2-4028-bbf0-10b01e235812","keyword":"旋风","originalKeyword":"旋风筒"},{"id":"a5352a5b-2a8d-4988-92be-cbead10d69d3","keyword":"气相","originalKeyword":"气相"},{"id":"5e0aa4a6-0b0f-44c1-aea8-7d0abaf5391d","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"209f3f78-fea5-453e-8f1c-de0193d5b91f","keyword":"k-ε湍流模型","originalKeyword":"k-ε湍流模型"}],"language":"zh","publisherId":"gsytb201406041","title":"5000 t/d水泥熟料生产线C1~C5旋风气相数值模拟","volume":"33","year":"2014"},{"abstractinfo":"为了研究颗粒相对于水泥生产预分解系统中旋风内两相流场的影响,分别使用不考虑颗粒影响的拉格朗日单向耦合方法与考虑颗粒影响的欧拉多相流方法对6000T/D预热器C1级旋风进行气固两相流的数值模拟,旋风颗粒出口处边界条件的处理采用了灰斗出口算法,该算法将锥出口到颗粒出口之间的空间中气流的轴向压降定义为只受重力影响,实现挡风板的作用.模拟结果与现场数据对比表明:拉格朗日单向耦合方法与欧拉多相流方法均可以精确的捕捉到旋风内部流体的流动情况,压力场分布相似,欧拉多相流方法下的流场速度分布更加合理,收尘效率精确度较高.","authors":[{"authorName":"毛娅","id":"00a8cd60-a698-4f2b-8786-f95f31f177ef","originalAuthorName":"毛娅"},{"authorName":"陈家乐","id":"2e9bba5a-9739-474c-bf4d-72f254ead410","originalAuthorName":"陈家乐"},{"authorName":"陈作炳","id":"0a90f4ba-1f62-4f1f-91d1-cd57ac38c480","originalAuthorName":"陈作炳"},{"authorName":"刘宁","id":"0fa461cc-4aa2-440b-af12-826c22652d3a","originalAuthorName":"刘宁"},{"authorName":"吕银雷","id":"529d734d-0802-48ec-8589-0ab056f124ed","originalAuthorName":"吕银雷"}],"doi":"","fpage":"459","id":"82e4b704-48cb-4fdc-8658-d9dd92b0e2a8","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"edd34f6b-85d0-4b21-bd36-79be32955a88","keyword":"拉格朗日单向耦合","originalKeyword":"拉格朗日单向耦合"},{"id":"72300cfb-f298-4953-b613-264ff7c50277","keyword":"欧拉多相流","originalKeyword":"欧拉多相流"},{"id":"9ac98d6c-af99-4f4e-81ce-f66375a3f6e0","keyword":"旋风","originalKeyword":"旋风筒"},{"id":"7d9c2330-cbf2-4061-9dc5-8158803c99e7","keyword":"气固两相流","originalKeyword":"气固两相流"}],"language":"zh","publisherId":"gsytb201702008","title":"采用拉格朗日法与欧拉法模拟旋风内气固两相流的对比研究","volume":"36","year":"2017"},{"abstractinfo":"介绍了卧式滚筒的两种浸没方式:半浸式和全浸式.从全浸式滚镀的内溶液更新与气体的排出过程中,论述了滚镀时滚筒不能全部浸没在液面以下的原因.提出了比较合理的滚筒浸没在溶液中深度的方案,用这个方案指导生产,可使滚镀过程始终保持在最佳状态.","authors":[{"authorName":"侯进","id":"3578fab5-dad8-4b84-84ab-9683a454ad66","originalAuthorName":"侯进"}],"doi":"10.3969/j.issn.1001-3849.2008.09.007","fpage":"25","id":"5856965e-e770-4171-8e03-626870101d97","issue":"9","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"41d9dc14-a489-4468-a36c-309cfe2962b1","keyword":"卧式滚筒","originalKeyword":"卧式滚筒"},{"id":"922db8cd-86e5-48ce-90e7-bc2860625a93","keyword":"全浸式","originalKeyword":"全浸式"},{"id":"c9b2b641-8bd6-484d-bec0-a9b4a0d9b7c2","keyword":"溶液更新","originalKeyword":"溶液更新"},{"id":"7d9f1039-a4a9-4c80-ac00-0876bde0a10e","keyword":"气体排出","originalKeyword":"气体排出"}],"language":"zh","publisherId":"ddjs200809007","title":"卧式滚筒的浸没方式","volume":"30","year":"2008"},{"abstractinfo":"采用RSM(雷诺应力模型)对旋风分离器内气相流场进行了数值模拟,计算得到不同体长度旋风分离器内流场的流动特性,结果表明分离器内的切向速度随着体长度的减小而增大;气体旋转运动的强度越强,分离效率越高.但体长度过短时,湍动能在内外涡分界面处有较大波动,使分离效率降低;当进口气速一定时,旋风分离器的压降随着体长度的增加而降低.","authors":[{"authorName":"王乐勤","id":"09a3817e-26c3-4c88-8c75-4d27e22552ba","originalAuthorName":"王乐勤"},{"authorName":"郝宗睿","id":"c4752225-15c4-4a21-9c0f-3f0ad4618610","originalAuthorName":"郝宗睿"},{"authorName":"王循明","id":"7dc52e2d-c0b7-42c6-9c20-d229090549d0","originalAuthorName":"王循明"},{"authorName":"焦磊","id":"0690bddf-eeb8-4bee-a887-b7c66371a948","originalAuthorName":"焦磊"}],"doi":"","fpage":"223","id":"8ced202b-ad63-4353-a769-75e258a9bcd7","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"896c4cf2-f0e0-4f49-a366-0614e7f3a287","keyword":"旋风分离器","originalKeyword":"旋风分离器"},{"id":"ac5ab12d-bd13-46c5-9929-c48aac07cf78","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"680fe510-2d7a-416a-8fc2-420837264221","keyword":"体长度","originalKeyword":"筒体长度"},{"id":"ff769227-f0cd-4114-ba14-8e49b1b7e828","keyword":"分离效率","originalKeyword":"分离效率"},{"id":"414e1901-2fd7-4a76-a3c1-a21ba7671f75","keyword":"压降","originalKeyword":"压降"}],"language":"zh","publisherId":"gcrwlxb200902012","title":"简体长度对旋风分离器内流场影响的数值模拟","volume":"30","year":"2009"},{"abstractinfo":"设计了一种无排气管旋风浓缩,运用CFD对无排气管旋风浓缩特性进行了计算,验证了设计参数的有效性.同时,采用ECT测量了管道截面上固体颗粒的浓度分布.两种方法所得结果具有很好的一致性.这两种方法的结合,为浓缩器的进一步深入研究提供了有效的方法.","authors":[{"authorName":"董向元","id":"cf91084c-a746-4a16-b26e-dd88fa70a88f","originalAuthorName":"董向元"},{"authorName":"陈琪","id":"1ddb7910-7d78-45a6-a60c-4589d0aec86f","originalAuthorName":"陈琪"},{"authorName":"刘石","id":"53dfc7ed-fb2b-46c0-b271-d952d7aa8071","originalAuthorName":"刘石"}],"doi":"","fpage":"229","id":"0152fa89-0625-4cab-a4bf-664a4ef29dd2","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"faf1a103-527b-4b43-9469-7a621e01a56e","keyword":"计算流体力学","originalKeyword":"计算流体力学"},{"id":"f4cfdd07-625e-421c-ac90-2f339fad56fa","keyword":"电容层析成像","originalKeyword":"电容层析成像"},{"id":"fe90e725-4fe9-4acf-bdbf-f32aa628d8c9","keyword":"图像重建","originalKeyword":"图像重建"},{"id":"dd90ae6f-5823-440c-9fdb-724a455c9f4c","keyword":"旋风","originalKeyword":"旋风筒"}],"language":"zh","publisherId":"gcrwlxb2006z1059","title":"CFD和电容成像对旋风简浓缩特性的对比研究","volume":"27","year":"2006"},{"abstractinfo":"采用颗粒离散元法模拟得到卧式行星磨磨内钢球平均接触力大小以及随填球率、钢球直径、磨半径和公转半径的变化规律,并与实验结果进行了比较分析.结果表明:行星磨的粉磨速率可以由平均接触力大小来确定,粉磨速率的对数是平均接触力线性函数,斜率为0.087.磨填球率的增加,导致钢球的平均接触力减小;随着钢球直径、磨半径、公转半径的增大,平均接触力呈线性增长,斜率分别为2.5,0.14,0.03,其中钢球直径对平均接触力的影响最大.","authors":[{"authorName":"朱飞","id":"aabcb7b3-57a0-4950-98f6-8415f9230ba5","originalAuthorName":"朱飞"},{"authorName":"张林进","id":"bda73305-6839-451b-913f-1e6426d8447f","originalAuthorName":"张林进"},{"authorName":"蔡道林","id":"91bbc4c5-1cda-41bc-bb9e-87e95dddc1d3","originalAuthorName":"蔡道林"},{"authorName":"叶旭初","id":"e377082c-f5f5-48a2-a5fb-40e1c76bf12d","originalAuthorName":"叶旭初"}],"doi":"10.3969/j.issn.1001-4381.2012.05.003","fpage":"10","id":"efa99bf2-aef2-44cb-9040-74cf2588e1b0","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"64cfbc4c-283c-4ff8-8fe2-d0fc68002b70","keyword":"粉磨速率","originalKeyword":"粉磨速率"},{"id":"28a27f13-5dfc-42fb-88d4-b276796c7309","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"a1e93730-e2f1-4d3f-9f4f-4a2376910be8","keyword":"卧式行星球磨机","originalKeyword":"卧式行星球磨机"},{"id":"2bc92f23-d0e9-4188-a27b-1f5393d546a3","keyword":"离散元法","originalKeyword":"离散元法"}],"language":"zh","publisherId":"clgc201205003","title":"卧式行星球磨机最佳参数的数值模拟","volume":"","year":"2012"},{"abstractinfo":"对卧式砂磨机进行设计改进,该砂磨机由机架、主轴支撑组件、搅拌磨碎机构、冷却循环系统4部分组成,搅拌磨碎机构由研磨盘与分离转子组成.研磨盘的轮毂与外周环形盘由3根轮辐支撑,轮辐起到棒销的作用,从而使其具备盘式砂磨机和棒销砂磨机的效果;缸内圆柱表面加工出半圆形的螺旋槽,缸套外圆柱面与缸体内圆柱表面配合连接,形成截面为半圆形的螺旋槽冷却循环通道,避免冷却水循环短路,冷却效果较好.","authors":[{"authorName":"程广振","id":"4f6fd4b9-815c-4513-b129-4ad354232fb8","originalAuthorName":"程广振"},{"authorName":"方明辉","id":"53419ed9-779a-4fc1-ab36-e868bfae8075","originalAuthorName":"方明辉"},{"authorName":"位世阳","id":"ff15499b-103b-40db-9d51-9559f0000fdf","originalAuthorName":"位世阳"},{"authorName":"童浙","id":"219ee210-6f13-47eb-9f13-5e1a294e05bb","originalAuthorName":"童浙"},{"authorName":"马佳航","id":"74075ec1-de3f-48f5-a6f5-efa02db7442f","originalAuthorName":"马佳航"},{"authorName":"谷艳春","id":"dc425127-01d5-4968-868c-219745721bf5","originalAuthorName":"谷艳春"},{"authorName":"尤奇峰","id":"65cf5888-bd8d-4165-ba4c-2b1e86fc13ba","originalAuthorName":"尤奇峰"}],"doi":"","fpage":"72","id":"7cdb3cd4-8735-4def-b2ba-384389461de9","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"f2de4af7-b81e-4154-8ad1-0fd621e179df","keyword":"结构优化","originalKeyword":"结构优化"},{"id":"785ab8fd-e845-4695-8483-83b2927b148f","keyword":"研磨盘","originalKeyword":"研磨盘"},{"id":"0ce32bad-b408-4753-afbd-0b3a4aaf7df3","keyword":"冷却循环","originalKeyword":"冷却循环"}],"language":"zh","publisherId":"tlgy201507015","title":"卧式砂磨机结构优化研究","volume":"45","year":"2015"},{"abstractinfo":"以湿球磨钛白初品为原料,利用卧式砂磨机研究了不同砂磨工艺对浆料粒度的影响,并考察了浆料不同粒度对其白度和水分散性的影响.实验结果表明:较优的砂磨工艺为砂磨转速3000 r/min,锆珠粒径1.8 mm,进料浓度410 g/L,进料泵转速l,填充率80%;在较优条件下实验室一级砂磨后的浆料中值粒径相对现场两级砂磨浆料降低了36 nm;粒度越小,浆料水分散性越好,当浆料中值粒径为231 nm时,水分散性达到99.3%,浆料不同粒度对白度基本没有影响.实验结果对生产现场砂磨能够提供重要的理论及技术支撑.","authors":[{"authorName":"王海波","id":"12ebae03-102f-470e-91d4-e75fd1fb2152","originalAuthorName":"王海波"},{"authorName":"王斌","id":"f1a3c5f7-afbf-4d9b-ae0c-20ed3f3b2552","originalAuthorName":"王斌"}],"doi":"","fpage":"2676","id":"85ec0ed3-b2f0-45e6-9653-fd988312f025","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d5ad3ca1-4a82-4faa-a955-8bc688bb3b8a","keyword":"卧式砂磨","originalKeyword":"卧式砂磨"},{"id":"43c12cb2-c101-4380-87ce-8d3af9a64bd0","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"3ad6d641-7821-427b-8878-0693842df972","keyword":"粒度","originalKeyword":"粒度"},{"id":"dfe84ff1-3659-4a7a-952c-48b1712fa291","keyword":"白度","originalKeyword":"白度"},{"id":"73471df5-cb05-49cd-a29c-950f6911e013","keyword":"水分散性","originalKeyword":"水分散性"}],"language":"zh","publisherId":"gsytb201608058","title":"钛白卧式砂磨研究","volume":"35","year":"2016"}],"totalpage":49,"totalrecord":483}