Xiaolei Su
材料科学技术(英文)
The SiC powders by Al or N doping have been synthesized by combustion synthesis, using Al powder and NH4Cl powder as the dopants and polytetrafluoroethylene as the chemical activator. Characterization by X-ray diffraction, Raman spectrometer, scanning electron microscopy and energy dispersive spectrometer demonstrates the formation of Al doped SiC, N doped SiC and the Al and N co-doped SiC solid solution powders, respectively. The electric permittivities of prepared powders have been determined in the frequency range of 8.2−12.4 GHz. It indicates that the electric permittivities of the prepared SiC powders have been improved by the pure Al or N doping and decrease by the Al and N co-doping. The paper presents a method to adjust dielectric property of SiC powders in the GHz range.
关键词:
Silicon carbide
Xiaolei Su
材料科学技术(英文)
The SiC powders by Al or N doping have been synthesized by combustion synthesis, using Al powder and NH4Cl powder as the dopants and polytetrafluoroethylene as the chemical activator. Characterization by X-ray diffraction, Raman spectrometer, scanning electron microscopy and energy dispersive spectrometer demonstrates the formation of Al doped SiC, N doped SiC and the Al and N co-doped SiC solid solution powders, respectively. The electric permittivities of prepared powders have been determined in the frequency range of 8.2−12.4 GHz. It indicates that the electric permittivities of the prepared SiC powders have been improved by the pure Al or N doping and decrease by the Al and N co-doping. The paper presents a method to adjust dielectric property of SiC powders in the GHz range.
关键词:
Silicon carbide
Xiaolei Su
材料科学技术(英文)
The nonstoichiometric β-SiC powders were synthesized via combustion reaction of Si and C system in a 0.1 MPa nitrogen atmosphere, using Teflon as the chemical activator. The prepared powders were invistigated by XRD and Raman spectra. The results indicates that the cell parameters of all the prepared β-SiC powder
are smaller than the standard value of β-SiC because of generation of CSi defects. The complex permittivity of prepared products was carried out in the frequency range of 8.2−12.4 GHz. It shows that the dielectric property of prepared β-SiC powder decrease with increasing PTFE content. The effect of CSi defects on dielectric property of -SiC powder has been discussed.
关键词:
Silicon carbide