{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文从超稳Y分子筛的制备与改性两个方面综述了超稳Y分子筛(USY分子筛)的研究进展,对改性的超稳Y分子筛的二次孔体积、比表面积、水热稳定性、酸量和酸强度等方面进行总结,并对USY分子筛改性研究的重点及发展方向进行了展望.","authors":[{"authorName":"汪颖军","id":"cb1c2963-faf9-46d8-8850-516959a83e8d","originalAuthorName":"汪颖军"},{"authorName":"孙羽佳","id":"c4eb3606-f188-41d2-9c2b-1dec2692aca7","originalAuthorName":"孙羽佳"},{"authorName":"所艳华","id":"9fa00d0c-e061-4fe5-9854-f21bb87c596c","originalAuthorName":"所艳华"},{"authorName":"席慧瑶","id":"67f5a3d2-b8fd-4084-bb92-125b4cc12f0e","originalAuthorName":"席慧瑶"},{"authorName":"祖新月","id":"f3a4af96-a43a-4828-bccf-1daaeb76e204","originalAuthorName":"祖新月"}],"doi":"","fpage":"3243","id":"6fa5c0a8-6a3e-42e1-a3bb-26851cf2c57e","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"92c526c3-37fe-4aa9-8d1e-def91f419c5d","keyword":"超稳Y分子筛","originalKeyword":"超稳Y分子筛"},{"id":"dfce57f1-e7dc-4576-a4f3-d946afbdb44b","keyword":"制备","originalKeyword":"制备"},{"id":"d2df4de9-8833-43fc-91b6-7fde1725ee21","keyword":"改性","originalKeyword":"改性"},{"id":"4738c2e5-6ae1-498b-8405-cc4577d720b8","keyword":"脱铝","originalKeyword":"脱铝"}],"language":"zh","publisherId":"gsytb201511031","title":"超稳Y分子筛改性的研究进展","volume":"34","year":"2015"},{"abstractinfo":"未添加任何添加剂的普通原料,用原位水热法合成出纳米 Y 型分子筛,讨论了不同的陈化时间,不同的晶化时间以及不同晶化温度对制备纳米 Y 型分子筛的影响,并考察了纳米 Y 型分子筛的热稳定性.结果表明,较适宜的合成条件为:陈化 19h,晶化时间为 8h,晶化温度为100℃.","authors":[{"authorName":"甄铁丽","id":"d23b8dc4-a5a9-46cb-88ea-807f0ffa8fcd","originalAuthorName":"甄铁丽"},{"authorName":"张树强","id":"26ea593c-2f73-4660-9d94-f9eea4204672","originalAuthorName":"张树强"},{"authorName":"王宁","id":"72996f31-93d6-412b-abd6-957143c6ce79","originalAuthorName":"王宁"}],"doi":"10.3969/j.issn.1001-1625.2007.03.014","fpage":"482","id":"eba4488d-a69e-4132-a1e0-804d98f3d87a","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"0cd7fb87-9794-4347-889e-9db1ad0ba5bd","keyword":"纳米 Y 型分子筛","originalKeyword":"纳米 Y 型分子筛"},{"id":"58d0bf5b-bcaf-4353-beca-86c24ff47852","keyword":"陈化时间","originalKeyword":"陈化时间"},{"id":"a37f9c31-8bcc-4812-bab9-2148c4176cb8","keyword":"晶化温度","originalKeyword":"晶化温度"},{"id":"7a6dc93b-a0a2-472a-acde-7d97838e2433","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"gsytb200703014","title":"纳米Y型分子筛的制备","volume":"26","year":"2007"},{"abstractinfo":"考察了“水热处理”以及“碱处理+水热处理”两种方法所制得的超稳Y分子筛的骨架硅铝比、孔结构特征以及酸量,并探讨了“碱处理+水热处理”方法对起始NaY分子筛的适应性.结果表明,在水热处理前,对NaY分子筛进行碱处理脱硅可在不改变最终样品的骨架超稳化水平和酸量的同时,样品的介孔体积显著增加.直接水热处理NaY分子筛所得样品介孔体积不超过0.14 cm3/g,而先碱处理后水热处理,所得样品介孔体积可达0.22 cm3/g.该法适用于制备骨架硅铝比高的NaY分子筛.起始原料的骨架硅铝比较低时,所得样品的介孔体积增幅小,而且微孔受损严重.","authors":[{"authorName":"申宝剑","id":"6d6f05ad-58cd-46b1-9fe9-50417bbfef47","originalAuthorName":"申宝剑"},{"authorName":"覃正兴","id":"36923f47-d202-4f26-b7b4-824e3ef18fba","originalAuthorName":"覃正兴"},{"authorName":"高雄厚","id":"b920d767-e55b-4ccf-880a-b40afcfffc52","originalAuthorName":"高雄厚"},{"authorName":"林枫","id":"7669589f-3067-4628-ae0c-b13470a68e96","originalAuthorName":"林枫"},{"authorName":"周淑歌","id":"e17c33da-b65d-475e-b351-7acbabb0a4e6","originalAuthorName":"周淑歌"},{"authorName":"沈文","id":"e8aa3ca2-f064-4ea0-8fdd-3e1915fbe8bf","originalAuthorName":"沈文"},{"authorName":"王宝杰","id":"ade62ff5-3ae2-4a00-84ed-ed63b1ba4af4","originalAuthorName":"王宝杰"},{"authorName":"赵红娟","id":"4c82e946-bfb7-42f7-b6d9-4d10a36d4274","originalAuthorName":"赵红娟"},{"authorName":"刘宏海","id":"58f881cd-8b57-4c5a-bcf4-e7030c06808e","originalAuthorName":"刘宏海"}],"doi":"10.1016/S1872-2067(10)60290-2","fpage":"152","id":"841291c7-b1aa-4784-ac63-4c3e033aef00","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"14eb088d-8204-4921-b65b-6095137439d3","keyword":"Y分子筛","originalKeyword":"Y分子筛"},{"id":"11d54e58-6e31-41ac-8f7f-0efe7041691d","keyword":"碱处理脱硅","originalKeyword":"碱处理脱硅"},{"id":"165506c4-5181-42e9-b68a-711e5301fed6","keyword":"水热脱铝","originalKeyword":"水热脱铝"},{"id":"e64d79ec-6df6-4d02-94b8-8bf975c29c13","keyword":"硅铝比","originalKeyword":"硅铝比"},{"id":"83d413b9-fdfa-4ab5-a8dc-1818e7dfec14","keyword":"超稳化处理","originalKeyword":"超稳化处理"},{"id":"a14f6e51-1e78-448e-b57f-ff364cbba1bd","keyword":"介孔","originalKeyword":"介孔"}],"language":"zh","publisherId":"cuihuaxb201201016","title":"碱处理脱硅与提高Y型分子筛硅铝比——矛盾的对立与统一","volume":"33","year":"2012"},{"abstractinfo":"针对催化裂化(FCC)废催化剂细粉带来的环境污染和未开发利用的现状,以此为原料合成了小晶粒Y型分子筛,并采用X射线衍射、扫描电镜、29Si和27Al固体核磁共振和激光粒度分析等技术对样品进行了表征.结果表明,以FCC废催化剂细粉为原料可以合成粒径为200nm左右的Y型分子筛,且制各过程中原料的活化方法和导向剂对所得样品结构影响很大.对原料采用碱熔活化,并在合成体系中加入导向剂,所得Y型分子筛的相对结晶度提高,比表面积增大,粒度减小.","authors":[{"authorName":"刘欣梅","id":"f21ae446-ff10-4bce-8659-25042d937890","originalAuthorName":"刘欣梅"},{"authorName":"梁海宁","id":"32a6872e-77be-4941-8b0f-a85885235a72","originalAuthorName":"梁海宁"},{"authorName":"李亮","id":"c2feae11-38b3-4e30-9d4c-901ccaa6fb2b","originalAuthorName":"李亮"},{"authorName":"杨婷婷","id":"a3e08388-9872-42e5-a8d9-c0da37ca6197","originalAuthorName":"杨婷婷"},{"authorName":"阎子峰","id":"688622d0-d467-4aa2-9173-f95f1b556ecd","originalAuthorName":"阎子峰"}],"doi":"10.3724/SP.J.1088.2010.91245","fpage":"833","id":"b5ce8940-dc20-4a5b-a858-96f3d418b315","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"3706433c-bf01-4ff3-b7ee-bfacfd4ac1aa","keyword":"催化裂化废催化剂","originalKeyword":"催化裂化废催化剂"},{"id":"23796c28-b03f-436e-902a-741046a42a7c","keyword":"Y型分子筛","originalKeyword":"Y型分子筛"},{"id":"6d8acd0c-e8fe-49e8-b8e5-b44118d2a0e0","keyword":"粒度","originalKeyword":"粒度"},{"id":"43160c33-6b11-402f-bce9-96c4a1fbe078","keyword":"活化","originalKeyword":"活化"}],"language":"zh","publisherId":"cuihuaxb201007020","title":"以催化裂化废催化剂粉合成超细Y型分子筛","volume":"31","year":"2010"},{"abstractinfo":"在没有添加剂的条件下,研究了以工业级水玻璃为原料原位水热合成超细NaY分子筛,并采用XRD、TEM、BET等方法对所合成的分子筛进行了表征.考察了陈化时间、碱度、晶化时间、晶化温度对NaY分子筛结晶度和晶粒大小的影响.结果表明:在陈化时间64h、硅铝胶组成x为6.0、晶化时间4h、晶化温度100℃的优化条件下,合成了晶粒尺寸小于200 nm的NaY分子筛.","authors":[{"authorName":"邹文芳","id":"7b6d37b2-4888-49ed-8e89-0eff7eafa584","originalAuthorName":"邹文芳"},{"authorName":"肖超","id":"84eaccd8-9330-400c-a892-f87c474e17bf","originalAuthorName":"肖超"},{"authorName":"辛征","id":"4cc8d1e7-ccaa-42ee-a222-7da3b5164498","originalAuthorName":"辛征"},{"authorName":"张培青","id":"58e4e8d8-3e82-469a-b713-9eb113a2dedb","originalAuthorName":"张培青"}],"doi":"","fpage":"1323","id":"d011d3d3-c6e9-4dbf-bfa3-0775724c91d6","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"6352dda9-b192-414a-b9f3-6ab2c4b2dbaf","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"21f1db47-c0e5-4533-af6f-9bceb7a12f4c","keyword":"超细分子筛","originalKeyword":"超细分子筛"},{"id":"8a289887-625a-4f25-9bcb-fa26c044bda1","keyword":"NaY","originalKeyword":"NaY"}],"language":"zh","publisherId":"gsytb201106020","title":"超细NaY分子筛的合成","volume":"30","year":"2011"},{"abstractinfo":"通过优化和组合不同脱铝补硅方法,依次经氟硅酸铵处理、600℃水热处理、硅溶胶+草酸处理和800℃水热处理过程,成功实现了200nm超细NaY分子筛的深度脱铝,最终产品骨架硅铝比高达27.3,比表面积为581.9m2/g,分子筛结晶度保持在65%以上.结果表明,对于超细NaY分子筛脱铝,第一步采用氟硅酸铵进行部分缺陷修补尤为重要根据分子筛晶粒尺寸不同,需严格控制氟硅酸铵用量和处理次数.当晶粒为200nm时,氟硅酸铵与分子筛骨架铝的摩尔比为0.16,处理一次较为适宜.在连续脱铝过程中及时补修脱铝产生的缺陷是保障超细NaY分子筛成功脱铝的关键,而采用氟硅酸铵、硅溶胶、800℃高温水热处理,可有效实施这种骨架修正作用.","authors":[{"authorName":"王希龙","id":"9fe86e67-b755-4f57-8b14-739845391d21","originalAuthorName":"王希龙"},{"authorName":"宋金娜","id":"8d2630b7-5903-4afb-a39d-2b950bc7411d","originalAuthorName":"宋金娜"},{"authorName":"叶修群","id":"6efb0de2-1453-4612-8b40-d6aae46fb631","originalAuthorName":"叶修群"},{"authorName":"顾海芳","id":"3ce697dd-c0ee-47a7-a054-b7e5e38db192","originalAuthorName":"顾海芳"},{"authorName":"黄曜","id":"7e34d672-7b78-498a-8146-60f2eccbeba5","originalAuthorName":"黄曜"},{"authorName":"牛国兴","id":"d158a916-1a69-4596-9c98-6a1fdb5a7114","originalAuthorName":"牛国兴"}],"doi":"10.3724/SP.J.1088.2012.20249","fpage":"1217","id":"ea8ebbdb-db50-4dba-b4d4-d958c9e70028","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e85a5e07-cb68-43b4-8221-cfd2221a6dde","keyword":"超细Y分子筛","originalKeyword":"超细Y分子筛"},{"id":"347e6f13-ed47-4220-a738-e2655afbf28a","keyword":"脱铝","originalKeyword":"脱铝"},{"id":"7d1ad271-cc1e-4668-bbaa-83f84d2ba203","keyword":"补硅","originalKeyword":"补硅"},{"id":"7004ab0f-a656-4f4f-849a-6ac3c6ee8012","keyword":"高硅铝比","originalKeyword":"高硅铝比"},{"id":"a289241d-510c-4427-a630-26122c31204e","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"cuihuaxb201207023","title":"超细NaY分子筛的深度脱铝","volume":"33","year":"2012"},{"abstractinfo":"用离子交换法制备了不同稀土含量的Y型分子筛(REY).X射线衍射分析表明稀土离子已进入分子筛的晶格位置,衍射谱上未出现稀土氧化物的特征衍射峰.用NH3程序升温热脱附法和吡啶红外光谱法研究了分子筛的酸性.结果表明,与稀土含量较低的Y型分子筛相比,高稀土含量的分子筛拥有较少的Lewis酸中心(151 μmol·g-1)和较多的强酸中心.由稀土Y型分子筛制备的模型催化剂的反应性能进一步反映了分子筛酸性随稀土含量的变化规律,随着稀土含量的增加,催化剂的重油产率由5.93%降低到5.15%.此外,吡啶环变形模v19b红外光谱间接证明了稀土离子有抑制骨架Al原子脱出的作用.","authors":[{"authorName":"刘璞生","id":"3110aa91-d1b0-46ea-9a1c-118db6fdfbe9","originalAuthorName":"刘璞生"},{"authorName":"张忠东","id":"19ef51fb-42bf-48c5-8e12-1763bb7ce350","originalAuthorName":"张忠东"},{"authorName":"汪毅","id":"370bed76-e753-449e-b30f-b6ec9e4b681c","originalAuthorName":"汪毅"},{"authorName":"孙雪芹","id":"2834d321-326a-4d44-94bf-f64854a744df","originalAuthorName":"孙雪芹"},{"authorName":"刘涛","id":"a5beb125-0d3d-4a2f-84fb-ae3dddfbdd2f","originalAuthorName":"刘涛"},{"authorName":"赵连鸿","id":"05adeb82-d436-4330-b6ac-c28509f3bd62","originalAuthorName":"赵连鸿"},{"authorName":"余颖龙","id":"5b8bf71d-c7cb-4c45-903f-394c87c7d215","originalAuthorName":"余颖龙"},{"authorName":"高雄厚","id":"6999ca8e-3238-4801-9422-7cbee0a133a9","originalAuthorName":"高雄厚"}],"doi":"","fpage":"510","id":"e4c0a685-dcfe-409e-973d-e0ceea0e53ee","issue":"4","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"44b0f34a-e842-443c-8d65-f6025fe23306","keyword":"Y型分子筛","originalKeyword":"Y型分子筛"},{"id":"8268d19b-4028-4ba0-9ba5-4a767e524a18","keyword":"离子交换","originalKeyword":"离子交换"},{"id":"437044d9-c864-4506-aa1a-064c6248ec5b","keyword":"NH3程序升温热脱附","originalKeyword":"NH3程序升温热脱附"},{"id":"47d48492-4edf-4dfc-a59e-69cc3c12786c","keyword":"吡啶红外光谱","originalKeyword":"吡啶红外光谱"},{"id":"18403123-e497-4b0a-86ba-3023096f49f5","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb201004023","title":"稀土含量对Y型分子筛酸性的影响","volume":"28","year":"2010"},{"abstractinfo":"采用X射线粉末衍射、29Si固体核磁共振、X射线光电子能谱和扫描电镜及能谱等方法研究了La,Ce增强Y分子筛结构稳定性的差异.结果表明,La和Ce的引入均可稳定Y分子筛的骨架结构,但La离子比含量相当的Ce离子更容易进入分子筛内部和抑制骨架铝的脱除,因而对分子筛结构的稳定作用更优.结合量子力学密度泛函计算方法,从理论上阐述了这种增强机制,即La或Ce的引入能显著增加分子筛骨架Al和相邻O原子的作用力,有效稳定分子筛骨架Al位,并且稀土离子与分子筛间存在较强的作用力;与Ce相比,La与分子筛的相互作用更大,Al-O作用力更强,因此,La比Ce更有利于稳定分子筛的骨架结构.","authors":[{"authorName":"于善青","id":"8e6adf1a-c21a-448b-b1b3-e50bfdd801c8","originalAuthorName":"于善青"},{"authorName":"田辉平","id":"48f1a957-8095-4851-805c-01687efe8365","originalAuthorName":"田辉平"},{"authorName":"代振宇","id":"76dd8734-1725-45ac-a36b-70a4fd8039cf","originalAuthorName":"代振宇"},{"authorName":"龙军","id":"8b42e2ae-efc7-4c8d-a701-55a55de5efd8","originalAuthorName":"龙军"}],"doi":"10.3724/SP.J.1088.2010.00310","fpage":"1263","id":"8a5bc403-5e28-4ffd-976d-fb5a971060ed","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"7666d6ab-2249-4307-b04b-15a6f030d645","keyword":"Y分子筛","originalKeyword":"Y分子筛"},{"id":"ab176ff0-5574-4b3c-a8d1-d4829bdd0547","keyword":"镧","originalKeyword":"镧"},{"id":"e8710b40-3838-4d93-8b1d-a6d4f80aee1a","keyword":"铈","originalKeyword":"铈"},{"id":"7410af85-b690-4598-b9b5-2aa3f11431c2","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"21d1574c-b284-4a07-9f2a-91a7dd8e467b","keyword":"密度泛函理论","originalKeyword":"密度泛函理论"},{"id":"25d79128-90f0-4d6b-af10-1d045750bc21","keyword":"机制","originalKeyword":"机制"}],"language":"zh","publisherId":"cuihuaxb201010013","title":"La或Ce增强Y型分子筛结构稳定性的机制","volume":"31","year":"2010"},{"abstractinfo":"首次以天然红辉沸石水热合成了Y型、P型分子筛,以IR研究了水热合成体系中分子筛结构的演变及晶相分布规律.研究表明,在高H2O/Na2O、低Ca2+/Na+体系中,主晶相为Y型分子筛,在低H2O/Na2O、高Ca2+/Na+体系中,主晶相为P型分子筛.","authors":[{"authorName":"李酽","id":"379f1cc5-5bcd-4f77-988d-47c8f4349252","originalAuthorName":"李酽"},{"authorName":"汪信","id":"26d6a15a-3e8c-44fc-af73-9f72790ca2f3","originalAuthorName":"汪信"},{"authorName":"岳明波","id":"d77d7d0c-9a14-41d1-9454-4c43bfc636ef","originalAuthorName":"岳明波"},{"authorName":"陆路德","id":"98aa1797-e6ea-4993-a80c-72bf403fae77","originalAuthorName":"陆路德"},{"authorName":"朱俊武","id":"eff4ca3d-05c6-4143-839e-8506875514ae","originalAuthorName":"朱俊武"}],"doi":"","fpage":"63","id":"63797aa6-780a-407a-853d-a06ac2c6a3cc","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"878fa6cb-1cf6-4420-8e92-33361dd2d858","keyword":"红辉沸石","originalKeyword":"红辉沸石"},{"id":"008d0cfa-9014-4428-a151-4d77ae84efa0","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"0cc511eb-863f-47ce-9ae3-40f3979c4112","keyword":"Y型分子筛","originalKeyword":"Y型分子筛"},{"id":"024805c7-2f94-4db6-a1de-7caab16e7cce","keyword":"P型分子筛","originalKeyword":"P型分子筛"},{"id":"734bf2a7-cf3a-4647-81a4-057e2b9a09dd","keyword":"红外光谱","originalKeyword":"红外光谱"}],"language":"zh","publisherId":"cldb200111023","title":"红辉沸石合成Y型和P型分子筛的IR研究","volume":"15","year":"2001"},{"abstractinfo":"Y型分子筛是催化裂化(FCC)的速率控制组分。 FCC过程中,催化剂在反应器和再生器中往往面临高温水蒸气存在的苛刻环境。因此,分子筛的热稳定性和水热稳定性是催化剂最为关注的性能之一。由于FCC原料中通常含有V、Ni、Na、Fe等不同数量的金属污染物,会对催化剂造成污染及钝化。进料中存在的卟啉类有机复合物持续不断的沉积在催化剂表面,由于含钒的有机金属卟啉化合物在反应中转化形成V2O5, V2O5在水热条件下形成H3VO4组分,在高温水热气氛下加速分子筛骨架结构水解,破坏了Y型分子筛的晶体结构,从而降低了催化剂活性,影响产品选择性。稀土Y型分子筛在FCC中扮演重要的角色,稀土交换分子筛可以提高催化酸性、裂化活性和热与水热稳定性。此外, Na在高温水蒸气条件下也会对分子筛结构造成破坏。一方面,钠能够中和Y型分子筛B酸中心,降低催化裂化活性;另一方面,水热条件下钠的存在会加速破坏Y型分子筛的结构。有关Y型分子筛结构破坏的机理解释较多,然而该过程的动力学研究鲜有报道。反应动力学不能提供一个直接的反应机理,但是任何反应机理的提出必须符合反应动力学的数据。本文采用离子交换法分别制备了一系列不同Na含量USY,不同稀土含量USY,以及含钠和稀土的USY分子筛,通过固相动力学模型考察了上述Y型分子筛水热结构破坏活化能的变化及钒对其活化能的影响。结果表明, Y型分子筛的结构破坏存在三种路径,分别是脱铝、脱硅和La–O键的断裂。钒加速了分子筛骨架水解速率;钒钠具有协同作用,同时存在时对分子筛破坏作用更加显著; NaOH的形成是速率控制步骤;稀土稳定了分子筛的结构,降低了分子筛的水热脱铝速率;钒与定位于分子筛小笼里稀土作用,破坏分子筛的[RE–OH–RE]5+的RE–O键夺取分子筛的骨架氧,导致骨架结构崩塌。由于稀土本身稳定了分子筛的结构,同时钒稀土作用时形成稳定的REVO4固定了钒的流动性,因此钒对REY结构的影响是几种因素相互叠加和抵消的结果。","authors":[{"authorName":"杜晓辉","id":"be28fd86-eea2-4e91-b787-6ddcbc0a24b0","originalAuthorName":"杜晓辉"},{"authorName":"李雪礼","id":"c87539b3-824c-4ff8-815a-5a20c8a86883","originalAuthorName":"李雪礼"},{"authorName":"张海涛","id":"8c6551b6-bd99-49a7-94da-112b190ae8b7","originalAuthorName":"张海涛"},{"authorName":"高雄厚","id":"da7eda26-0338-4e34-b0aa-5b95ba264adf","originalAuthorName":"高雄厚"}],"doi":"10.1016/S1872-2067(15)60975-5","fpage":"316","id":"9fb48bd7-2c9d-403e-b0c2-c82417249e8f","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"ea85b62c-2376-4f8f-81a0-c48dc4dc80a9","keyword":"Y型分子筛","originalKeyword":"Y型分子筛"},{"id":"328ffc12-7315-4806-9ed8-42891161136e","keyword":"钒","originalKeyword":"钒"},{"id":"22c1393f-8de3-40d2-9f94-5e3bbd9be0af","keyword":"钠","originalKeyword":"钠"},{"id":"a8652949-9910-46a2-9f73-4576e94c7380","keyword":"稀土","originalKeyword":"稀土"},{"id":"3247745c-0699-4605-ab99-77e10a011479","keyword":"水热稳定性","originalKeyword":"水热稳定性"},{"id":"1e0e29bb-84aa-4cee-8478-40410e935892","keyword":"结构破坏","originalKeyword":"结构破坏"},{"id":"b9abbdc2-7089-4ccf-a5a0-c1c5f539576f","keyword":"表观活化能","originalKeyword":"表观活化能"}],"language":"zh","publisherId":"cuihuaxb201602014","title":"Y型分子筛结构破坏的动力学分析","volume":"37","year":"2016"}],"totalpage":2259,"totalrecord":22586}