{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以JIS SUS 304和SUS 304N为实验材料,在应力控制条件下研究了两种奥氏体不锈钢的低周疲劳性能.结果表明:(1)在低应力区(σa<430 MPa),SUS 304N的疲劳寿命高于SUS 304的疲劳寿命;但在高应力区(σa>430 MPa),静强度较高的SUS 304N的疲劳寿命反而低于SUS 304的疲劳寿命.(2)SUS 304中疲劳微裂纹萌生的循环次数比远小于SUS 304N.在低应力区,SUS 304中的疲劳微裂纹萌生后,其扩展速率大于SUS 304N;但在高应力区,SUS 304中的疲劳微裂纹萌生后,其扩展速率小于SUS 304N,使它在高应力区的疲劳寿命超过了SUS 304N.(3)添加氮元素后,奥氏体组织的稳定性得到提高.疲劳实验过程中SUS 304发生了显著的应变诱发马氏体转变,而SUS 304N基本未发生此现象.","authors":[{"authorName":"丁剑","id":"e951bed3-bf16-4d79-b1a2-9e7824375057","originalAuthorName":"丁剑"},{"authorName":"张获","id":"6a4f209c-86fa-44fa-a7ac-4ce048a4818a","originalAuthorName":"张获"},{"authorName":"西田新一","id":"006353de-df33-4cc5-bd1d-858296b7fb63","originalAuthorName":"西田新一"},{"authorName":"服部信佑","id":"77147de9-d8c8-4ad2-aa23-f9c44f028794","originalAuthorName":"服部信佑"}],"doi":"10.3321/j.issn:0412-1961.2002.12.007","fpage":"1261","id":"20c0b8b3-2eed-4914-8079-f1a4e37af89f","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3dad5f79-e451-4fbf-8993-5c0654837e77","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"3a266009-7202-4276-b4f1-34c8932a0edb","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"ebfe51ad-f24a-4aed-ad8d-982b3d4320b2","keyword":"应力控制","originalKeyword":"应力控制"},{"id":"cb203ec7-9e5b-40b2-bbcb-9c516bdd09f5","keyword":"微裂纹","originalKeyword":"微裂纹"}],"language":"zh","publisherId":"jsxb200212007","title":"应力控制条件下奥氏体不锈钢的低周疲劳性能","volume":"38","year":"2002"},{"abstractinfo":"研究了片状和网篮两种典型组织对TC18钛合金不同应力振幅下低周疲劳寿命的影响.结果表明:TC18钛合金低周疲劳寿命对显微组织的变化不敏感.在相同的应力振幅下,双态组织和片状组织的疲劳寿命基本相当.TC18钛合金的低周疲劳寿命N取决于加载的应力振幅,σmax与N之间呈对数关系,相关系数达0.99以上.","authors":[{"authorName":"冯抗屯","id":"c5b94526-41f1-44c4-8e84-f030d777cd62","originalAuthorName":"冯抗屯"},{"authorName":"沙爱学","id":"9f0994ed-d00f-4803-8009-d2ed23ca9efb","originalAuthorName":"沙爱学"},{"authorName":"王庆如","id":"c3470627-1f18-4ff5-b183-f5a9a0367d7b","originalAuthorName":"王庆如"}],"doi":"10.3969/j.issn.1001-4381.2009.05.013","fpage":"53","id":"834b4d3b-d29d-45ad-8913-72c96691f02a","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"bb143a37-0108-455b-ae71-35e8bf778004","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"d28f9462-7d58-4703-8110-b0aa49e54a48","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"8603ccc0-79af-4d7a-b3da-8fdd27f0fc0c","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"4f091240-d6a9-4951-aa50-86b1100c8ffa","keyword":"应力控制","originalKeyword":"应力控制"}],"language":"zh","publisherId":"clgc200905013","title":"显微组织对TC18钛合金应力控制低周疲劳性能的影响","volume":"","year":"2009"},{"abstractinfo":"研究了热作模具钢在应力控制下的等温疲劳和同相热机械疲劳寿命,发现在相同的应力幅下,同相热机械疲劳寿命低于上限温度的等温疲劳寿命.通过研究疲劳过程中的循环应变响应和疲劳断口特征时发现,等温疲劳条件下,滞后环朝压缩方向发展,疲劳裂纹主要为穿晶萌生与扩展;在热机械疲劳条件下,滞后环朝拉伸方向发展,疲劳裂纹主要沿晶萌生与扩展.这是导致同相热机械疲劳寿命低于等温疲劳的主要原因.","authors":[{"authorName":"方健儒","id":"8f8e6b72-6d8b-496f-85ce-45dcee116603","originalAuthorName":"方健儒"},{"authorName":"姜启川","id":"ca58b827-8198-40b5-93ce-3780c6949f13","originalAuthorName":"姜启川"},{"authorName":"韩增祥","id":"78297526-d2b7-41d1-a163-500b524fbd67","originalAuthorName":"韩增祥"},{"authorName":"王海清","id":"73194dc5-4f7c-4e70-89cc-c86f112655f8","originalAuthorName":"王海清"}],"doi":"10.3969/j.issn.1001-4381.2002.10.003","fpage":"11","id":"5060a2a0-4a6b-416a-b38a-b720a29e2aa0","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fffa744d-d6ab-4896-b397-776a6105f8b7","keyword":"热作模具钢","originalKeyword":"热作模具钢"},{"id":"9f9dcdeb-76d5-4a1a-81dc-875b9e48848a","keyword":"热机械疲劳","originalKeyword":"热机械疲劳"},{"id":"dcc5e27d-a47b-4337-87ce-42c958935263","keyword":"等温疲劳","originalKeyword":"等温疲劳"},{"id":"054cf4b5-1650-481a-9ccc-63c70d754d0e","keyword":"温度循环","originalKeyword":"温度循环"},{"id":"315e7f34-1fac-4d35-b591-c6adc8b24007","keyword":"应力控制","originalKeyword":"应力控制"}],"language":"zh","publisherId":"clgc200210003","title":"热作模具钢在高温热机械应力循环下的疲劳断裂行为","volume":"","year":"2002"},{"abstractinfo":"延性耗竭理论认为,高温疲劳和蠕变产生的材料流动可以用粘性流进行描述,失效判据为材料动粘性等于材料韧性,∑υd=Tm.本文在此基础上提出一种新的疲劳蠕变寿命预测方法,认为只有拉伸应力引起的塑性变形或蠕变变形才构成延性耗竭,并提出以拉伸应力达到(σmax-√σmaxσα)作为开始塑性变形的条件.该方法适用于应力控制模式,且能综合反映应力比、加载速率、拉伸保载时间和平均应变速率的影响.用该方法对1.25Cr0.5Mo钢540℃应力控制下的疲劳区、蠕变区及疲劳蠕变交互作用区的寿命进行预测,预测结果与实测结果吻合较好,精度明显优于频率修正法及应变能频率修正法.","authors":[{"authorName":"范志超","id":"7bb715c8-b40d-4201-a95a-24c6ad2916d3","originalAuthorName":"范志超"},{"authorName":"陈学东","id":"613c2077-bc85-40a9-96ce-81938ee82429","originalAuthorName":"陈学东"},{"authorName":"陈凌","id":"7e97a978-4016-4151-b4c6-4654ae1a15d9","originalAuthorName":"陈凌"},{"authorName":"蒋家羚","id":"49855d83-e7bf-4522-a2cb-84019528bf86","originalAuthorName":"蒋家羚"}],"doi":"10.3321/j.issn:0412-1961.2006.04.015","fpage":"415","id":"d34c15b1-f434-42f0-b659-3857cd42a652","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ac7f327c-3312-4d08-b777-958d6e964871","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"a6012057-3d02-414d-950a-616d74d7f833","keyword":"蠕变","originalKeyword":"蠕变"},{"id":"ba959e5f-b70e-4534-a3cd-faf90c9c5f51","keyword":"延性","originalKeyword":"延性"},{"id":"4970e3b5-cf9d-414c-a453-9a93b6d3b3b7","keyword":"应力控制","originalKeyword":"应力控制"},{"id":"ea60de2a-8e24-4d9e-8e8c-598c8f07d961","keyword":"高温","originalKeyword":"高温"}],"language":"zh","publisherId":"jsxb200604015","title":"基于延性耗竭理论的疲劳蠕变寿命预测方法","volume":"42","year":"2006"},{"abstractinfo":"对热轧态和动态应变时效预变形态的316L奥氏体不锈钢进行了550℃下不同加载水平的疲劳蠕变实验.与热轧态相比,在应力控制的疲劳蠕变循环过程中,动态应变时效表现为位移的突然阶跃现象;动态应变时效预变形处理能有效地减小材料的循环应变幅度,提高材料的强度,推迟材料中出现位移阶跃现象的循环周次,延长材料的疲劳蠕变寿命.","authors":[{"authorName":"江慧丰","id":"157f0521-2e31-4878-9184-482fd4f4360b","originalAuthorName":"江慧丰"},{"authorName":"陈学东","id":"4dc65f03-4f7e-49aa-8203-e51cb6525214","originalAuthorName":"陈学东"},{"authorName":"范志超","id":"6c182471-a25c-4afe-92cd-1fe81fe5d883","originalAuthorName":"范志超"},{"authorName":"董杰","id":"c92fa436-6dc1-43a5-b62b-2c013950bfb7","originalAuthorName":"董杰"},{"authorName":"姜恒","id":"88e686e2-9165-45b5-91a9-d4b76da818c4","originalAuthorName":"姜恒"},{"authorName":"陆守香","id":"658da0a8-46d0-4f0a-a21d-c644ed2dedce","originalAuthorName":"陆守香"}],"doi":"10.3321/j.issn:0412-1961.2009.03.012","fpage":"326","id":"08f1ce27-6785-4eae-9543-97815e6d55c5","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"68e8e827-e587-4a87-b627-d068f3aad9d0","keyword":"316L不锈钢","originalKeyword":"316L不锈钢"},{"id":"06cd4c0f-2f92-4bf2-846f-3f042d2fb349","keyword":"疲劳蠕变","originalKeyword":"疲劳蠕变"},{"id":"f8fc11b0-c9ad-464b-9caf-e9c5b2c7e211","keyword":"动态应变时效","originalKeyword":"动态应变时效"},{"id":"db688b20-faa8-4918-8cdb-911f79ec8891","keyword":"应力控制","originalKeyword":"应力控制"},{"id":"582cc435-ad5e-45f4-9020-8d43e94abfcc","keyword":"高温","originalKeyword":"高温"}],"language":"zh","publisherId":"jsxb200903012","title":"动态应变时效对316L不锈钢疲劳蠕变行为的影响","volume":"45","year":"2009"},{"abstractinfo":"研究TC21合金应变控制和应力控制的低周疲劳行为.实验温度为室温,循环应变比和应力比均为0.1,载荷波形为三角波.结果表明,在应变疲劳的最初阶段,TC21合金循环拉应力时快速软化,循环压应力时快速硬化,随着循环进行软化和硬化速度降低.在整个循环阶段,软化速度与应变有关;背应力影响较小,摩擦应力一直在变化,循环应力的变化与摩擦应力有关.应力控制的低周疲劳结果表明,TC21合金循环蠕变明显,循环蠕变与应力大小有关,摩擦应力是影响循环蠕变的主要因素.","authors":[{"authorName":"虞忠良","id":"cb839882-1c00-4912-b293-f9d0f1b5eb3b","originalAuthorName":"虞忠良"},{"authorName":"赵永庆","id":"635cce7d-3865-468c-8386-4a93a4a641bc","originalAuthorName":"赵永庆"},{"authorName":"周廉","id":"1b4f0546-c6b0-4e9e-83dd-503423ac0d1d","originalAuthorName":"周廉"},{"authorName":"孙军","id":"c7f708c6-1654-4992-871e-b1211effba30","originalAuthorName":"孙军"}],"doi":"","fpage":"224","id":"b7c70483-3064-49d1-9096-cf6c09275dc0","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d490939e-ade8-4d35-a366-ca89ab29c06e","keyword":"TC21合金","originalKeyword":"TC21合金"},{"id":"a9ef12e0-b25e-46ca-812c-b52ae4404072","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"f2aaa4b2-62f2-42fc-9c3a-7ee3f3afd385","keyword":"摩擦应力","originalKeyword":"摩擦应力"},{"id":"e80b5fbe-ac61-4235-8a1c-14c40a0e5250","keyword":"背应力","originalKeyword":"背应力"},{"id":"93b6b98e-3a03-4c7d-8100-9f3864ae2b35","keyword":"循环蠕变","originalKeyword":"循环蠕变"}],"language":"zh","publisherId":"xyjsclygc200902008","title":"TC21合金应力控制和应变控制的低周疲劳行为","volume":"38","year":"2009"},{"abstractinfo":"分析了中厚板轧件常见的板形缺陷问题及其产生的原因,建立了轧件在矫直过程中横向残余应力计算的解析模型并进行了数值求解;建立了3维接触有限元模型并进行了模拟计算,验证了解析法与有限元法计算结果的一致性,以此为基础研究了中厚板矫直横向残余应力的消减趋势、规律和控制策略,研究结果表明:加大压下量有利于减小残余应力,轧件断面的最大塑性百分比控制在70%~80%为宜。","authors":[{"authorName":"王勇勤","id":"f61b65fd-b7b5-4418-b19b-259534a9e5f2","originalAuthorName":"王勇勤"},{"authorName":"徐维","id":"ccafd2a2-7fda-44a3-bd9f-e67e06dd8d1d","originalAuthorName":"徐维"},{"authorName":"严兴春","id":"e7de8fbf-0429-4d29-a7ca-e9bff4ba4c64","originalAuthorName":"严兴春"},{"authorName":"刘志芳","id":"103ae6ce-253f-496f-9a52-a9e385aeed1a","originalAuthorName":"刘志芳"},{"authorName":"王勤","id":"c6dfc6af-a36d-4e40-93f5-de4feaac973e","originalAuthorName":"王勤"}],"doi":"","fpage":"60","id":"33de3b62-3867-419e-bd30-809b11c2d747","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b8fa8b8c-41f2-4835-936c-78fbbc00c23f","keyword":"中厚板","originalKeyword":"中厚板"},{"id":"51ec5a07-ce1a-4d1c-be81-0c9e054f5936","keyword":"矫直","originalKeyword":"矫直"},{"id":"6ed63775-2460-43f1-ac81-d8237cb5afa0","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"57a8b695-d7f8-42dd-ac17-563f7601a17d","keyword":"接触有限元","originalKeyword":"接触有限元"}],"language":"zh","publisherId":"gt201204015","title":"中厚板横向残余应力控制对策研究","volume":"47","year":"2012"},{"abstractinfo":"分析了中厚板轧件常见的板形缺陷问题及其产生的原因,建立了轧件在矫直过程中横向残余应力计算的解析模型并进行了数值求解;建立了3维接触有限元模型并进行了模拟计算,验证了解析法与有限元法计算结果的一致性,以此为基础研究了中厚板矫直横向残余应力的消减趋势、规律和控制策略,研究结果表明:加大压下量有利于减小残余应力,轧件断面的最大塑性百分比控制在70%~80%为宜。","authors":[{"authorName":"王勇勤,徐维,严兴春,刘志芳,王勤","id":"7bf7312a-b613-41ee-9652-02358755d8f6","originalAuthorName":"王勇勤,徐维,严兴春,刘志芳,王勤"}],"categoryName":"|","doi":"","fpage":"60","id":"647a726c-06b8-4dd7-859d-335ae0598a9d","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c9120581-b3c9-4a22-8b4d-e9260c36fec1","keyword":"中厚板 ","originalKeyword":"中厚板 "},{"id":"5751d28e-a21d-4f2b-8bcf-0222d5a30806","keyword":" leveling ","originalKeyword":" leveling "},{"id":"2e723980-7fb6-4b49-a834-f6f63cde9b85","keyword":" residual stress ","originalKeyword":" residual stress "},{"id":"832757fa-243a-48b7-b786-b0e066eba2e1","keyword":" contact FEM","originalKeyword":" contact FEM"}],"language":"zh","publisherId":"0449-749X_2012_4_4","title":"中厚板横向残余应力控制对策研究","volume":"47","year":"2012"},{"abstractinfo":"针对生产现场大尺寸5A06-H112铝合金板箱形件拼焊制造过程中存在应力松弛的问题,对多种焊接工艺方法进行了研究.通过对不同焊接接头的力学性能试验、残余应力测试、焊接金相和硬度测量结果对比显示,铝合金焊接结构的应力变化存在先升后降的变化趋势,而TIG焊由于采用较小的线能量和多层焊,较MIG焊其应力松弛的程度存在差异.结果表明,增加焊后时效时间8~10d,并采用TIG焊技术将有效减小铝合金焊接结构的应力松弛,使端头下沉减少50%左右,满足了设计图纸的要求.","authors":[{"authorName":"赵征","id":"e93ef9aa-53a0-457c-93fd-9c13b3e49552","originalAuthorName":"赵征"},{"authorName":"王艳芳","id":"30499a88-ca03-4b28-be32-5788186d2a8c","originalAuthorName":"王艳芳"}],"doi":"","fpage":"59","id":"068d8b05-801e-4443-b8d6-6ddd977b12c7","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"7dc0583f-5f2b-4521-b390-8fb376be655b","keyword":"5A06-H112铝合金","originalKeyword":"5A06-H112铝合金"},{"id":"2f972b02-b49e-4fe2-9bbb-1ed7647b24fa","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"38431a98-2aa9-4e6f-aa05-c29adc907404","keyword":"控制","originalKeyword":"控制"}],"language":"zh","publisherId":"yhclgy201205014","title":"铝合金焊接结构的应力松弛及控制","volume":"42","year":"2012"},{"abstractinfo":"综述了7 xxx系铝合金的应力腐蚀开裂机理(Stress corrosion cracking)与影响因素.应力腐蚀开裂机理主要有阳极溶解理论、氢致理论与“相变-Mg-H”理论.适当的固溶工艺与时效工艺可以提高铝合金的抗应力腐蚀性能;铝合金的应力腐蚀开裂敏感性随水蒸气中氧含量的增加而提高,含有Cl-、Br-和I-的水溶液会加快铝合金的应力腐蚀开裂的裂纹扩展速率.","authors":[{"authorName":"李安敏","id":"39ca19d7-3ad7-4a44-965c-2ed586d609be","originalAuthorName":"李安敏"},{"authorName":"王晖","id":"3d940541-68ba-4c81-8f76-88e06438a0a7","originalAuthorName":"王晖"},{"authorName":"郭长青","id":"57e50951-39f5-493e-8f8b-50a931f39029","originalAuthorName":"郭长青"},{"authorName":"陈烨","id":"49801ed4-5a3d-49e9-9013-fad9e01b749c","originalAuthorName":"陈烨"},{"authorName":"于多","id":"1ac1316d-3c15-4c5b-8460-bcea1d69045f","originalAuthorName":"于多"}],"doi":"10.11896/j.issn.1005-023X.2015.017.016","fpage":"84","id":"4083cf20-50e1-4626-835c-8b44afdc51fe","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"97617c7b-1047-4cce-abe9-2b1efb966a5d","keyword":"7xxx系铝合金","originalKeyword":"7xxx系铝合金"},{"id":"67aa077e-dbfc-4a22-84c4-1204da8cc520","keyword":"应力腐蚀","originalKeyword":"应力腐蚀"},{"id":"dec89f1f-a87a-46f5-bd75-c217ded763b8","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"cldb201517016","title":"7xxx系铝合金应力腐蚀的控制","volume":"29","year":"2015"}],"totalpage":2734,"totalrecord":27335}