{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以 Si 粉、Al 粉和 Al2O3粉为原料压制成条样,在1650~1850 K 氮气和埋 Si3N4颗粒气氛下分别合成了β-SiAlON 晶须、带状和柱状晶,并系统研究了β-SiAlON 材料可控合成条件,进而结合热力学分析了β-SiAlON材料的生长机制。结果表明:以Si粉、Al粉和Al2O3为原料,在氮气(纯度99.9%)和埋Si3N4颗粒气氛下在1650~1850 K保温6 h,可以合成不同形貌的β-SiAlON材料。生长温度是β-SiAlON材料形貌控制的关键因素。生长温度为1650 K时,合成了β-SiAlON晶须,晶须直径200~400 nm,长径比100~1000;生长温度在1700~1800 K时,可以合成β-SiAlON带状晶体,厚度为200 nm,宽度为1~4μm,长宽比在10~20之间;生长温度升高至1800 K时,出现大量柱状晶体。结合晶须显微结构形貌和热力学分析,β-SiAlON晶须的生长机制为气-固(VS)生长机制。","authors":[{"authorName":"彭犇","id":"640403a5-e647-47d6-b09a-a31914d0c984","originalAuthorName":"彭犇"},{"authorName":"邱桂博","id":"ab39e179-04f3-4905-a6ee-0124dc143697","originalAuthorName":"邱桂博"},{"authorName":"岳昌盛","id":"814a9aee-265f-4fda-bec3-fe4c9f9664a9","originalAuthorName":"岳昌盛"},{"authorName":"张梅","id":"8294a799-7e8b-48dd-bddd-78b578112107","originalAuthorName":"张梅"},{"authorName":"郭敏","id":"23cc664f-7d7f-4311-ba67-a0e5a3588ebc","originalAuthorName":"郭敏"}],"doi":"10.3724/SP.J.1077.2014.13559","fpage":"706","id":"5e050da4-0e66-46fc-b70e-3430ed9da679","issue":"7","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f93ad190-b404-4739-89b5-839bc76a18ec","keyword":"β-SiAlON材料","originalKeyword":"一维β-SiAlON材料"},{"id":"3d8124dc-3172-4c85-8927-4ad02da0cf1c","keyword":"可控制备","originalKeyword":"可控制备"},{"id":"e8276a25-7de1-46a4-90e2-4e24c90595d7","keyword":"生长机制","originalKeyword":"生长机制"},{"id":"2273d46f-fe21-4d6d-8460-02636058d844","keyword":"热力学","originalKeyword":"热力学"}],"language":"zh","publisherId":"wjclxb201407006","title":"β-SiAlON材料可控合成","volume":"","year":"2014"},{"abstractinfo":"综述了近年来SiC、准纳米材料制备工艺的最新研究进展,重点介绍了模板生长法、化学气相沉积法、熔体生长法、碳热还原法和溶胶-凝胶法的工艺特点,并对不同工艺方法制备的SiC、准纳米材料的微观形貌、优异性能进行了简要概述,总结了现阶段SiC、准纳米材料制备工艺研究所面临的问题及发展前景.","authors":[{"authorName":"李镇江","id":"bdfc01bd-7fe9-4015-84a1-b64de6aaf6e2","originalAuthorName":"李镇江"},{"authorName":"范炳玉","id":"11f2e647-0343-4d1d-aa88-dc922eef06ca","originalAuthorName":"范炳玉"},{"authorName":"孟阿兰","id":"80259ea0-3bf4-490e-b706-a8aed6ce349e","originalAuthorName":"孟阿兰"},{"authorName":"张猛","id":"7bba43ea-617c-44d9-ae8f-4db299296642","originalAuthorName":"张猛"}],"doi":"","fpage":"967","id":"a6b1238f-3cb5-4276-99c1-b831bcadcdf2","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"04f4c375-937e-4b2d-a30e-fa6812673b5f","keyword":"SiC","originalKeyword":"SiC"},{"id":"370ffd1e-94ab-4737-b1f8-b5f64fed1cad","keyword":"、准纳米材料","originalKeyword":"一维、准一维纳米材料"},{"id":"6ba1deee-9937-422c-8e4a-f9c7e3dbaac8","keyword":"制备工艺","originalKeyword":"制备工艺"}],"language":"zh","publisherId":"gncl201106001","title":"SiC、准纳米材料的制备工艺研究","volume":"42","year":"2011"},{"abstractinfo":"硅纳米材料是重要的纳米电子器件材料,由于其形貌不同,导致的电学等特性也不相同,因此硅纳米材料的形貌是重要的研究内容之.硅纳米结构包括纳米线、纳米带及纳米管等,同种硅纳米材料由于制备方法不同其形貌也不相同.评述了硅纳米材料的形貌及其制备方法.","authors":[{"authorName":"郭池","id":"581e815c-4a87-4781-abe0-a98216b3295a","originalAuthorName":"郭池"},{"authorName":"唐元洪","id":"6893303a-e707-4b4b-9f0a-ef57a5ba4cb0","originalAuthorName":"唐元洪"},{"authorName":"裴立宅","id":"498caf16-3f2e-4483-8cd6-e9bec4f279f6","originalAuthorName":"裴立宅"},{"authorName":"张勇","id":"e1d2969a-b3e7-4845-a8aa-4795a4438469","originalAuthorName":"张勇"}],"doi":"","fpage":"83","id":"1604705d-75f5-43d1-a447-5ee73ad42984","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c18809cc-7e0f-4b07-9643-ebf2b3bfc1d4","keyword":"硅纳米材料","originalKeyword":"一维硅纳米材料"},{"id":"70bfbe05-af0d-4129-af55-576b096f3ee3","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"fb2d419f-df3f-4a7c-82ac-05356e72a0f5","keyword":"纳米带","originalKeyword":"纳米带"},{"id":"17d7d758-1eda-43e2-956b-4dd23e0f56c4","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"fb305c9a-c10d-48f3-9c46-bd897a5847a4","keyword":"形貌","originalKeyword":"形貌"}],"language":"zh","publisherId":"cldb2005z1027","title":"硅纳米材料形貌的研究","volume":"19","year":"2005"},{"abstractinfo":"通过对β-Sialon复合MsAION材料的抗渣及抗钢水侵蚀性能的研究发现,该材料抗渣侵蚀性能较好,侵蚀机理为β-Sialon与MgAION溶解于渣中并析出针状Sialon和近化学计量的镁铝尖晶石,同时渣向材料内部渗透.需要说明的是Mg-AION在渣中的溶解低于β-Sialon的溶解;钢水对试样的侵蚀程度较低.分析表明侵蚀过程主要是基质中β-Sialon溶解,颗粒基本未变化,侵蚀后形成了薄薄的主要由尖晶石和Sialon及刚玉构成的反应层.","authors":[{"authorName":"罗星源","id":"7bf3d5f6-d049-46ff-8070-7182185203ce","originalAuthorName":"罗星源"},{"authorName":"孙加林","id":"125b7bd2-4d3b-4c42-8634-53f60079956e","originalAuthorName":"孙加林"},{"authorName":"王金相","id":"bef43f48-ef19-4d85-8333-847fa2f4fa71","originalAuthorName":"王金相"},{"authorName":"洪彦若","id":"9eec7eea-785e-4cea-90e7-f364d7e8d930","originalAuthorName":"洪彦若"}],"doi":"10.3969/j.issn.1001-1935.2000.03.007","fpage":"147","id":"05d1f3de-4e7a-4a7c-82b9-4d9122e0f92a","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"03c6bc43-ba4e-4d59-8982-c361c0be93b0","keyword":"β-Sialon","originalKeyword":"β-Sialon"},{"id":"d6daacf2-548c-4985-8e57-7d31a8d58596","keyword":"MgAION","originalKeyword":"MgAION"},{"id":"71dac0b7-4ff1-4597-a280-be3cb4740a12","keyword":"抗渣性","originalKeyword":"抗渣性"},{"id":"1f904cf2-9be4-4b2e-a72c-19a361f4d572","keyword":"侵蚀","originalKeyword":"侵蚀"}],"language":"zh","publisherId":"nhcl200003007","title":"新代β-Sialon复合MgAION耐火材料抗渣及抗钢水性能","volume":"34","year":"2000"},{"abstractinfo":"纳米材料因其优异的光学、电学及力学性能等特性而引起了凝聚物理界、化学界和材料界科学家们的关注,近年来成为纳米材料研究的热点.综述了纳米材料的种类,常用制备方法;介绍了纳米材料制备的最新进展,以及纳米材料的应用.","authors":[{"authorName":"胡海华","id":"144e49b4-727c-4b86-95a9-24418474e253","originalAuthorName":"胡海华"},{"authorName":"曹小华","id":"7c04b021-f58f-4d7a-9aa4-6b5855025ee6","originalAuthorName":"曹小华"}],"doi":"","fpage":"86","id":"aab59318-2421-4e67-9c3b-23c117c78388","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6ceb2a84-f01e-446c-a8ca-23d8613a5298","keyword":"纳米材料","originalKeyword":"一维纳米材料"},{"id":"7166f66a-e241-4929-a2b2-b6ef12d2347b","keyword":"材料制备","originalKeyword":"材料制备"},{"id":"55ba6454-5210-43cc-8c3b-99f74b967d29","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb2004z2027","title":"纳米材料的研究进展","volume":"18","year":"2004"},{"abstractinfo":"自从碳纳米管被发现以后,纳米材料作为纳电子器件的重要组成部分,其合成、材料物性以及应用已经引起了人们的广泛重视.本文从纳米材料的制备入手,讨论了纳米材料的的制备方法及其各自特点,分析了纳米材料形成机制,并对其表征方法做了简单的介绍,根据其特殊性能分析其潜在应用.","authors":[{"authorName":"刘文成","id":"0b1abd13-78f4-4dfa-8eb0-5042ad169f35","originalAuthorName":"刘文成"},{"authorName":"蔡伟","id":"e48ae50a-87ce-4862-8744-496bdb35deaa","originalAuthorName":"蔡伟"},{"authorName":"孟祥龙","id":"3863d855-c7c4-4498-8d84-d46290eca401","originalAuthorName":"孟祥龙"}],"doi":"","fpage":"515","id":"57e8caa2-94cb-4bc9-bcda-cc25178aa463","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c7d9bbc9-665d-4b3f-b87a-9bf30a0cfb79","keyword":"纳米材料","originalKeyword":"一维纳米材料"},{"id":"b500f75d-1d73-4506-945a-759c9aa8bb78","keyword":"合成","originalKeyword":"合成"},{"id":"b6625493-c416-4366-b19f-763daa6f1303","keyword":"表征","originalKeyword":"表征"},{"id":"3a798329-8894-49a3-b1ef-046659159300","keyword":"纳电子器件","originalKeyword":"纳电子器件"}],"language":"zh","publisherId":"gncl200604002","title":"准纳米材料的研究现状","volume":"37","year":"2006"},{"abstractinfo":"纳米材料在纳米电子学、纳米光电子学、超高密度存储和扫描探针显微镜等领域具有潜在的应用前景,已成为21世纪材料领域研究的热点.本文介绍了纳米材料的特性和制备方法,并阐述了纳米材料的应用状况和前景,以及国内外在纳米材料方面的研究进展.","authors":[{"authorName":"曹敏花","id":"0ec86888-91e7-44cf-b22c-dd186e474c4c","originalAuthorName":"曹敏花"},{"authorName":"郭彩欣","id":"c881842d-8d7c-44c1-b867-112b50754285","originalAuthorName":"郭彩欣"},{"authorName":"杨宇","id":"bdc07a2d-470c-4765-9f6c-8c7cac74e0e2","originalAuthorName":"杨宇"},{"authorName":"胡长文","id":"f30fa5a6-c09e-4235-99e0-5c51ce2b7d68","originalAuthorName":"胡长文"}],"doi":"","fpage":"2731","id":"d2811624-c3dc-42fb-879b-ff71b5f56955","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"236a0645-8f84-4c23-8eff-cf6cbc091340","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"e9beaed6-3957-47a7-a824-4027e9b13dd4","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"8cfd45b1-727e-46b9-b8af-41c9e2e93b3f","keyword":"纳米棒","originalKeyword":"纳米棒"},{"id":"0940bb24-0c1a-4638-a18f-cc7eabe95dc3","keyword":"纳米管","originalKeyword":"纳米管"}],"language":"zh","publisherId":"gncl2004z1764","title":"纳米结构材料研究进展","volume":"35","year":"2004"},{"abstractinfo":"水热合成是制备纳米材料的方法之,可以用来合成碳、金属、半导体以及氧化物等多种无机纳米材料,由于其操作简单、成本低廉以及条件温和等优点而备受青睐.简单介绍了水热技术在制备纳米材料上的应用、影响纳米材料生长的因素以及纳米材料在国内外的研究进展.","authors":[{"authorName":"杨小勤","id":"39374c74-8848-408f-8a9b-dd993eed8690","originalAuthorName":"杨小勤"},{"authorName":"赵永男","id":"ef91e763-18db-47ea-8c63-47e4ff6e8aaf","originalAuthorName":"赵永男"}],"doi":"","fpage":"90","id":"617760ff-2b48-4017-a9e4-b433350e0584","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d994b207-a480-4340-aaf1-761b39238c86","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"d52cb6e2-d240-485a-aa94-49623b667454","keyword":"纳米材料","originalKeyword":"一维纳米材料"},{"id":"78d26bdf-4a83-4057-81d0-f580d84be521","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"cldb2006z2027","title":"纳米材料的水热合成","volume":"20","year":"2006"},{"abstractinfo":"总结了近几年来国内外硅及含硅化合物纳米材料研究的最新进展,其中包括Si、SiO2、SiC、Si3N4等纳米材料的制备与表征及其适用化的可能性;简述了种新型的含硅化合物纳米结构材料的合成方法.简单介绍了硅及含硅化合物纳米结构的应用,根据当前纳米材料的发展趋势分析了制备硅及含硅化合物纳米材料所存在的问题以及今后的发展方向.","authors":[{"authorName":"高后秀","id":"4a0c00eb-751c-4b91-87c5-dbc86483b8fb","originalAuthorName":"高后秀"},{"authorName":"王炜娜","id":"5e9b8d25-73ae-4514-a8c4-e4a2bdb3834f","originalAuthorName":"王炜娜"},{"authorName":"陈泉水","id":"a45932ee-5853-4e2d-9ba3-1835279d25e3","originalAuthorName":"陈泉水"},{"authorName":"刘双翼","id":"9a95a540-6c67-48a4-a268-996b8dda2566","originalAuthorName":"刘双翼"}],"doi":"10.3969/j.issn.1004-244X.2005.05.015","fpage":"50","id":"b233e28c-1c5d-4cec-8d99-8a68fbe81a1e","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bc43e1d6-f3c4-470d-b5fb-1f0e36f9e5f4","keyword":"硅及含硅化合物","originalKeyword":"硅及含硅化合物"},{"id":"07f8aa85-0e65-454d-a3ec-513933dfbd60","keyword":"纳米材料","originalKeyword":"一维纳米材料"},{"id":"83993784-0520-449d-a278-7797c33f5ca5","keyword":"制备方法","originalKeyword":"制备方法"}],"language":"zh","publisherId":"bqclkxygc200505015","title":"含硅纳米材料的研究动向","volume":"28","year":"2005"},{"abstractinfo":"复相sialon陶瓷材料种比单相sialon性能更优良的高技术新材料.较详尽地阐述了目前已制备出的各种复相Sialon陶瓷材料的性能,特别报道了目前研究较少的O′-Sialon-TiN复相陶瓷材料的部分性能,并展望了复相Sialon陶瓷材料的应用前景.\n","authors":[{"authorName":"姜涛","id":"684d9750-8d41-45c2-a4e7-db748a177f60","originalAuthorName":"姜涛"},{"authorName":"薛向欣","id":"619c5048-367d-48cd-a391-15cb0797ebb1","originalAuthorName":"薛向欣"},{"authorName":"杨建","id":"b8cefa21-4005-4f4d-88bd-875704ccf4f0","originalAuthorName":"杨建"}],"doi":"","fpage":"30","id":"d3029e89-7a18-49c6-872e-012c2d8611e8","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e5c3f01d-3a6c-475f-b8f5-2ddc30c52e5d","keyword":"复相Sialon","originalKeyword":"复相Sialon"},{"id":"f636a4c4-59e5-4a0e-bf18-732d494ba1e3","keyword":"陶瓷材料","originalKeyword":"陶瓷材料"},{"id":"90b874eb-7dd6-4491-b171-88103cb6e8ad","keyword":"性能","originalKeyword":"性能"},{"id":"6564a452-5dab-4e11-9ce8-06eb2ff8420a","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb200109009","title":"复相Sialon陶瓷材料的研究进展","volume":"15","year":"2001"}],"totalpage":11181,"totalrecord":111810}