{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用射频磁控溅射方法在ITO基片上外延掺Ag的ZnO薄膜,分别用XRD、SEM和紫外可见光分光光度计表征外延薄膜结构、形貌和光学性质.ZnO:Ag/ITO薄膜伏安特性的研究表明,ZnO:Ag与ITO形成异质.在紫外光波长365nm、负偏压15V情况下异质暗电流为11.2hA,光电流为198hA,灵敏度(光电流与暗电流之比)为17.7.此异质的紫外光响应上升时间为700ms,下降时间为1.5s.","authors":[{"authorName":"李大伟","id":"36e97e7e-d3c2-4cc7-b23f-0eeb7f29e860","originalAuthorName":"李大伟"},{"authorName":"蒋向东","id":"38813690-4669-474e-8457-52c9d0004f2e","originalAuthorName":"蒋向东"},{"authorName":"谢康","id":"f2a4062e-07ba-4c4c-ac69-a8cc06409187","originalAuthorName":"谢康"},{"authorName":"曾东","id":"398e95fc-1875-44d2-acd7-fba611defd68","originalAuthorName":"曾东"}],"doi":"","fpage":"47","id":"9ba2c8c5-84d8-403a-9ded-2228690ab3a1","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ea507e53-142e-4f5f-91a2-d10be476f8e6","keyword":"ZnO掺Ag","originalKeyword":"ZnO掺Ag"},{"id":"95898243-c3d4-4194-8aa5-c43f0d9e6fe1","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"},{"id":"4112b7a0-2b2d-413a-8e0f-526e8fe03f2f","keyword":"异质","originalKeyword":"异质结"},{"id":"74878572-f45d-46c3-8e4e-0f4a770c468f","keyword":"响应时间","originalKeyword":"响应时间"}],"language":"zh","publisherId":"cldb201102015","title":"异质外延ZnO掺Ag薄膜及其异质紫外光特性的研究","volume":"25","year":"2011"},{"abstractinfo":"详细介绍了β-FeSi2的结构和β-FeSi2薄膜的物理特性,以及基于β-FeSi2薄膜的异质结在光电方面的应用.目前,基于β-FeSi2薄膜的异质应用的研究主要集中在PL和EL等LED领域,而对其应用于太阳能电池方面的研究还很薄弱,所获得的光电转换效率最高是3.7%,远低于其16%~23%的理论值.","authors":[{"authorName":"熊锡成","id":"49c286d5-3df3-42c2-8728-4300ff869a1a","originalAuthorName":"熊锡成"},{"authorName":"谢泉","id":"508c9690-a46c-4c2b-b28c-c7c87abbfd8a","originalAuthorName":"谢泉"},{"authorName":"张晋敏","id":"da5c1d10-029a-4c8e-87d1-9f09a8f62a22","originalAuthorName":"张晋敏"},{"authorName":"肖清泉","id":"b4a3cd6a-2734-4238-ad84-15b572b0a82f","originalAuthorName":"肖清泉"}],"doi":"","fpage":"15","id":"5cf9d712-2b40-4c85-bb2a-f0cf5c00181f","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b49dfc8c-ef45-4bc4-9cd5-4fb3fd5475ba","keyword":"β-FeSi2","originalKeyword":"β-FeSi2"},{"id":"da575cad-1eea-4ac5-a889-dfedb6432916","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"af07be38-6919-4f8a-9140-ca94fd99639a","keyword":"光电性质","originalKeyword":"光电性质"},{"id":"5e7b1f67-5bd4-4550-b572-0548d3b78a59","keyword":"异质","originalKeyword":"异质结"},{"id":"c1e31a81-5f79-4abd-aacb-52fc7de03176","keyword":"太阳能电池","originalKeyword":"太阳能电池"}],"language":"zh","publisherId":"cldb201017004","title":"基于β-FeSi2薄膜的异质研究现状","volume":"24","year":"2010"},{"abstractinfo":"采用射频磁控溅射法,在不同的Ar∶O2条件下,以高掺磷n型Si衬底为磷掺杂源制备了p型ZnO薄膜和p-ZnO/n-Si异质.对ZnO∶P薄膜进行了光致发光谱(PL)、霍尔参数、Ⅰ-Ⅴ特性、扫描电镜(SEM)和X射线衍射谱(XRD)等测试.结果表明,获得的ZnO∶P薄膜沿(0002)晶面高取向生长,以3.33 eV近带边紫外发光为主,伴有2.69 eV附近的深能级绿色发光峰,空穴浓度为8.982 × 1017/cm3,空穴迁移率为9.595 cm2/V·s,p-ZnO/n-Si异质I-V整流特性明显,表明ZnO∶P薄膜具有p型导电特性.","authors":[{"authorName":"朱慧群","id":"b5f9daa9-19bb-43d2-813d-fb1691320bc4","originalAuthorName":"朱慧群"},{"authorName":"李毅","id":"d7cf5b1b-2f84-4fb5-9bd9-9177f1034191","originalAuthorName":"李毅"},{"authorName":"丁瑞钦","id":"633a7a0d-1676-4d7e-be43-0f0f0c4a1f75","originalAuthorName":"丁瑞钦"},{"authorName":"王忆","id":"d3b1afb0-b595-4269-9fea-7f01b1d71dcd","originalAuthorName":"王忆"},{"authorName":"黄洁芳","id":"050166d3-b611-4a52-9ecc-010b65f43832","originalAuthorName":"黄洁芳"},{"authorName":"张锐华","id":"fe2ed5e9-d65d-4f6b-8996-cb8f26d3557f","originalAuthorName":"张锐华"}],"doi":"","fpage":"636","id":"612c56a8-27ac-4cf9-a01a-41fd374549f1","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"b5197de7-3304-4a05-865a-3ada160ed494","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"3fd31d58-3f21-4d18-af42-640fb8e6d5fd","keyword":"p型ZnO薄膜","originalKeyword":"p型ZnO薄膜"},{"id":"8e823ed4-d731-445e-a55d-92eed4cfc04c","keyword":"磷掺杂","originalKeyword":"磷掺杂"},{"id":"731c886f-5d4a-464b-a5f1-4d5f7b08517d","keyword":"异质","originalKeyword":"异质结"}],"language":"zh","publisherId":"rgjtxb98201203019","title":"p-ZnO薄膜及其异质的光电性质","volume":"41","year":"2012"},{"abstractinfo":"基于MEMS技术在P型<100>晶向双面抛光单晶硅片上制作c型硅杯,在C型硅杯上表面扩散P+,采用磁控溅射法在扩散区上制备择优取向为<0002>晶向的n-ZnO薄膜,形成n-ZnO/P-Si异质.采用HP4280A型C-V特性测试仪分析n-ZnO/p-Si异质的C-V特性,该异质结为突变.采用HP4145B型半导体参数测试仪分析n-ZnO/p-si异质,I-V特性,结果给出,n-ZnO/p-Si异质结在正向偏压下,电流随外加偏压按指数函数增加,反向电流不饱和,采用突变异质的正反向势垒能带结构对其,I-V特性进行分析.","authors":[{"authorName":"赵晓锋","id":"901daa18-aca4-44c8-a00f-f5f67f5063d1","originalAuthorName":"赵晓锋"},{"authorName":"温殿忠","id":"510e9abb-8454-4127-a63f-6702277244ef","originalAuthorName":"温殿忠"}],"doi":"10.3969/j.issn.1007-4252.2008.06.015","fpage":"1026","id":"1fccab2a-a76c-491d-a8f9-3943fc72c3a4","issue":"6","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"3aa81862-5adb-428b-930f-752c73b6cfcd","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"cb48a1f2-5ec4-4089-bee7-b39ad5e4e5a6","keyword":"异质","originalKeyword":"异质结"},{"id":"d11f8610-d6ed-4161-9b57-072b3d93a60e","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"fe8ebfad-18db-43ad-b39b-30f42f958f6d","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"}],"language":"zh","publisherId":"gnclyqjxb200806015","title":"基于MEMS制作n-ZnO/p-Si异质及特性","volume":"14","year":"2008"},{"abstractinfo":"应用时域有限差分(FDTD)方法,通过数值模拟研究光在二维异质光子晶体L型弯曲波导的传输特性.结果表明:在异质光子晶体波导中能更好地对光进行控制;并且异质光子晶体L型弯曲波导的传输效率较同质光子晶体波导提高了6%~7%.计算结果为高度集成化的光子晶体波导器件,提供了一条新的设计思路和依据.","authors":[{"authorName":"刘璟\n","id":"66effd29-5d82-47e4-beae-ecd560410a18","originalAuthorName":"刘璟\n"},{"authorName":"陈朝阳","id":"e1f337e8-dc77-4db2-a3cd-964673dc617e","originalAuthorName":"陈朝阳"},{"authorName":"杨光松","id":"24569eb9-f02a-42d0-b8e4-b4e8d16d5674","originalAuthorName":"杨光松"},{"authorName":"杜勇","id":"4bfd572d-1bb9-4584-b2ac-d4cfc148af34","originalAuthorName":"杜勇"}],"doi":"","fpage":"1416","id":"dba06ef5-0bab-4f04-a669-eb7061537c92","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7f055df3-71d5-438d-97da-90d6aebd90b6","keyword":"导波光学","originalKeyword":"导波光学"},{"id":"530425eb-cfcb-41ee-bad1-c4022e67a87f","keyword":"光子晶体波导","originalKeyword":"光子晶体波导"},{"id":"644c7bb4-1fc2-42d4-b670-32c14622a7e0","keyword":"时域有限差分法","originalKeyword":"时域有限差分法"},{"id":"cc0811e9-d762-4218-9c8e-4357cc9d0d5e","keyword":"异质","originalKeyword":"异质结"},{"id":"802e74db-4e0d-4e6e-a655-282672b422db","keyword":"传输特性","originalKeyword":"传输特性"}],"language":"zh","publisherId":"rgjtxb98200906024","title":"二维异质光子晶体弯曲波导的传输特性研究","volume":"38","year":"2009"},{"abstractinfo":"掺杂锰氧化物是一种重要功能材料,近来其光电功能特性受到重视.利用对靶溅射方法在n型硅基底上沉积了100 nm的两种镧掺杂锰氧化物薄膜LaxCa1-xMn03(x=0.4和x=0.67),构成异质.分别研究了在无光照射、532 nm激光辐照、1064 nm激光辐照、模拟太阳光辐照4种情况下两种异质的光生伏特效应.对比实验表明,与无光条件下相比,光照下的异质负向区的整流特性变化明显,而正向导通区的整流曲线变化不大.其中在同样的光功率下,模拟太阳光入射时异质I-V曲线变化最为明显,此时I-V曲线与坐标轴相交所构成的图形区域的面积也最大,光电转化效率最高,填充因子约为23%.高掺杂的异质La0.67Ca0.33 Mn03/Si的光电转化效率高于低掺杂的异质La0.4Ca0.6Mn03/Si.对LaxCa1-xMn03/Si异质的紫外-可见光电流谱的测量结果表明此类异质结在400~1100 nm波长范围(涵盖整个可见光波段)具有良好的吸收和光电转化,这些特性将有利于探索基于锰酸盐氧化物异质的新型太阳能电池材料.","authors":[{"authorName":"吕志清","id":"c6f573c6-14d8-4ad0-9e78-952e8840350a","originalAuthorName":"吕志清"},{"authorName":"冯鑫","id":"44b72397-a6d5-45c8-9d75-9390b7983bec","originalAuthorName":"冯鑫"},{"authorName":"尼浩","id":"bbc460dc-f3d4-4de6-aaa0-15c054a5e903","originalAuthorName":"尼浩"},{"authorName":"赵昆","id":"a8555c6f-2f40-450a-9c2a-c85bc5a9b0eb","originalAuthorName":"赵昆"},{"authorName":"","id":"96d49b67-f418-4580-af95-3a8f7672fa6c","originalAuthorName":""},{"authorName":"","id":"2dea8b59-0ff0-4f21-afee-e4257e203f1a","originalAuthorName":""}],"doi":"10.3969/j.issn.0258-7076.2013.02.013","fpage":"255","id":"93f02a09-9ec1-479d-9955-ea721c63a19a","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ad0b5aa3-1664-4580-8b1b-db9283de6daf","keyword":"镧掺杂","originalKeyword":"镧掺杂"},{"id":"54f9fe65-ebc9-405e-8bd2-fda1cf35d25c","keyword":"锰酸盐","originalKeyword":"锰酸盐"},{"id":"161bf4b5-8f79-4a0b-8ad3-730a8392c930","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"ae064700-6910-4eab-9151-656323871b87","keyword":"异质","originalKeyword":"异质结"},{"id":"8d368865-4b25-42ac-86bb-3159b41f6925","keyword":"光生伏特效应","originalKeyword":"光生伏特效应"}],"language":"zh","publisherId":"xyjs201302013","title":"Lax Ca1-xMnO5/Si异质的光伏特性","volume":"37","year":"2013"},{"abstractinfo":"采用水热法制备出球形ZnO颗粒,用微波辅助多元醇法对其表面进行修饰后得到ZnO/Ag异质复合材料.利用X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的结构和形貌进行表征,用紫外-可见光谱分析了样品的吸光性能.结果显示:所制备的ZnO/Ag异质是由面心立方的Ag纳米颗粒附着在纤锌矿结构的ZnO球表面形成的;与ZnO相比,ZnO/Ag异质的紫外可见光吸收光谱发生明显红移,在紫外和可见光范围均有较强的吸收.","authors":[{"authorName":"张振飞","id":"7c4417fa-bd4c-48d6-ba27-96a4b9a9ba25","originalAuthorName":"张振飞"},{"authorName":"刘海瑞","id":"d710636d-f6bf-4467-976c-9f465b1fbc40","originalAuthorName":"刘海瑞"},{"authorName":"张华","id":"d604e4dd-90b1-4925-aa2a-1cc34c74f0cf","originalAuthorName":"张华"},{"authorName":"刘旭光","id":"f28c6988-74ba-42c7-983b-822ee7af4d4b","originalAuthorName":"刘旭光"},{"authorName":"贾虎生","id":"ee571d9d-b178-44a7-ba65-48686c292bd5","originalAuthorName":"贾虎生"},{"authorName":"许并社","id":"02ddb5ac-04ee-4aef-95fd-eaf960acd1c7","originalAuthorName":"许并社"}],"doi":"","fpage":"2595","id":"57200677-62ba-49e3-b779-23ee4444c7b1","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f9691727-2858-4fe1-b9a6-93b249f81be6","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"493fc875-2bf5-4742-af79-989a0e595723","keyword":"ZnO/Ag","originalKeyword":"ZnO/Ag"},{"id":"e8a2ed47-bac1-4859-88a7-c0030b919d54","keyword":"水热法","originalKeyword":"水热法"},{"id":"2741f811-93dc-4269-8c52-184f34ac9fcb","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1b98b8f4-6406-41bb-84b6-8ab6b991a87e","keyword":"异质","originalKeyword":"异质结"}],"language":"zh","publisherId":"rgjtxb98201312022","title":"ZnO/Ag球形异质复合材料的制备及其吸光性能研究","volume":"42","year":"2013"},{"abstractinfo":"碳基一维纳米异质由于其独特的结构与性能,以及在纳米器件方面的应用前景,得到了广泛的关注和大量的研究.通过详细述评碳基一维纳米异质的各种制备方法,主要分为气相法、液相法、模板法,以及其他方法,如电场诱导、放电等离子体烧结、电子束照射、微机械操作和化学键连接等.展望了碳基一维纳米异质的发展趋势,并认为其大批量可控制备、界面结构、物性,以及纳米器件的组装将是未来一段时间内的研究热点.","authors":[{"authorName":"潘春旭","id":"eed6dfd2-71f9-4932-ac38-59f08b5f4975","originalAuthorName":"潘春旭"},{"authorName":"祁祥","id":"544df88b-ed91-4932-8989-ec6d58d726f4","originalAuthorName":"祁祥"}],"doi":"","fpage":"1","id":"e5872cc3-160a-41a2-89cf-cd243a942533","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"6b3f1215-0b28-4c89-bd73-6cbf37ded407","keyword":"异质","originalKeyword":"异质结"},{"id":"b1fd36ce-143b-4455-a73b-aa4bdbf581fd","keyword":"一维","originalKeyword":"一维"},{"id":"50fb9502-270f-40e3-a534-2550720b7313","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"6dad1569-95fd-4e37-8ea4-44d96f445e32","keyword":"碳","originalKeyword":"碳"},{"id":"ca601ad1-cb6b-4c2d-8d01-dc144f345521","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"xxtcl200901001","title":"碳基一维纳米异质制备的研究进展","volume":"24","year":"2009"},{"abstractinfo":"通过实验制备得到OVC薄膜材料,并对其进行掺Cd处理,以提高其载流子浓度.然后根据CuIn0.7Ga0.3Se2、OVC、CdS、ZnO这4种半导体的相关材料参数和实验数据,画出了它们形成异质前后的能带图,并计算得到它们的能带边失调值△Ec、△Ev.由此得出,在CIGS薄膜太阳电池中形成OVC后,大大改善了其异质特性,从而也可以改善电池的性能.","authors":[{"authorName":"薛玉明","id":"a4c8f378-d585-4624-9a9c-9f1090b0114d","originalAuthorName":"薛玉明"},{"authorName":"孙云","id":"1fd7f96a-8857-4ba2-a04e-46bc3e9d211a","originalAuthorName":"孙云"},{"authorName":"朴英美","id":"956b7dd4-9742-4240-9287-a0fc86c70011","originalAuthorName":"朴英美"},{"authorName":"李长健","id":"dca19a9b-6e79-4139-b787-dcce3c081127","originalAuthorName":"李长健"}],"doi":"","fpage":"1009","id":"5cb6dad4-ed8a-450e-916f-e5c44daac2c1","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"dba4c15c-d270-4a8a-b179-ef5b651a3c0d","keyword":"异质","originalKeyword":"异质结"},{"id":"6e78e6db-0255-4892-a890-4139830463e6","keyword":"能带边失调值","originalKeyword":"能带边失调值"},{"id":"2019c4e2-f3d8-4ea5-ad6c-84bc4d86b1ec","keyword":"CIGS","originalKeyword":"CIGS"},{"id":"019b003c-23ad-409d-b560-d8272e48efb7","keyword":"OVC","originalKeyword":"OVC"}],"language":"zh","publisherId":"gncl2004z1281","title":"OVC薄膜材料及其对CIGS薄膜太阳电池异质的改进","volume":"35","year":"2004"},{"abstractinfo":"利用溶胶-凝胶法与固相混合法制备了掺La超微纳米晶TiO2负载ZnO异质纳米复合材料La-TiO2/ZnO.采用比表面积(BET和BJH)、X-射线衍射(XRD)、紫外-可见光吸收(UV-vis)、高分辨透射电镜(HRTEM)和X-射线光电子能谱(XPS)表征催化剂的物理化学性能.La-TiO2/ZnO异质光催化活性通过紫外光降解亚甲基蓝(MB)来评价,当nTiO2:nLa∶ nZnO=1∶0.015∶0.5时,光催化活性最佳.其主要原因是掺La超微纳米晶TiO2在ZnO表面形成多异质,可有效抑制光生电子空穴对的复合.本文探讨了光催化活性较高的催化机理.","authors":[{"authorName":"邱明艳","id":"185a2452-5a2c-41bd-93bf-a40f5125c11f","originalAuthorName":"邱明艳"},{"authorName":"张天永","id":"f7baccd6-60b4-471d-bb3e-a444e335482c","originalAuthorName":"张天永"},{"authorName":"李彬","id":"c82475a7-9a3e-4080-a389-75b59b874bcf","originalAuthorName":"李彬"},{"authorName":"牛永生","id":"de4e958e-3088-4fb4-98d3-f0494ba9c2ba","originalAuthorName":"牛永生"}],"doi":"","fpage":"1809","id":"8cc72851-a0b5-4163-bdde-4f7e87432ff5","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"d56b608b-61c9-409f-aa93-89207f0135dd","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"4d0d1610-bc9e-44a5-a3a0-5ac1393ea787","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"0617565f-8545-470b-86c0-263bd790d099","keyword":"异质","originalKeyword":"异质结"},{"id":"5bbe4e6c-49d8-4f74-aef0-e4365c5a6a8a","keyword":"协同效应","originalKeyword":"协同效应"},{"id":"d04c047a-51bb-463b-8a89-365793f59e00","keyword":"光催化活性","originalKeyword":"光催化活性"}],"language":"zh","publisherId":"rgjtxb98201407038","title":"La-TiO2/ZnO异质纳米复合材料的光催化性能","volume":"43","year":"2014"}],"totalpage":149,"totalrecord":1488}