{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"为了改善SiCp 与Al基体之间的界面,在碱性条件下,甲醛作为还原剂,采用化学镀的方法在SiCp 表面沉积铜层,然后采用无压渗透方法制备SiCp/Al复合材料.采用X射线衍射仪、3D立体视频显微镜、扫描电子显微镜来分析化学镀后 SiCp 和复合材料的表面、界面形貌、组织结构及物相,并通过 EDS能谱对复合材料表面元素成分分析,利用激光闪光法测定复合材料导热系数.结果表明,相比酒石酸钾钠单一络合剂,采用酒石酸钾钠和 EDTA-2Na 组成的双络合剂的SiCp 镀层更致密,且镀层未被氧化,复合材料界面结合良好,界面厚度为2.5~3μm,有 AlCu2相生成,无Al4 C3脆性相存在.室温下,镀铜后的复合材料热导率达到181 W/(m·K),远高于没有表面改性的复合材料热导率102 W/(m·K).","authors":[{"authorName":"李多生","id":"a9ccd8d7-e9d9-45c8-83e7-e3fb85d109c8","originalAuthorName":"李多生"},{"authorName":"吴文政","id":"5df47b39-663b-4087-b959-133797dc14b6","originalAuthorName":"吴文政"},{"authorName":"俞应炜","id":"b3f319b9-e515-4600-9498-fdbb6275d84d","originalAuthorName":"俞应炜"},{"authorName":"邹爱华","id":"176d2f86-bed4-4759-873f-90d66b399045","originalAuthorName":"邹爱华"},{"authorName":"郜友彬","id":"e45e12fd-dd1a-431d-a739-164b71d76979","originalAuthorName":"郜友彬"},{"authorName":"陈佳","id":"1dc45519-67b4-4b16-8f5b-692399bb9f40","originalAuthorName":"陈佳"},{"authorName":"吴武英","id":"90fe354d-1786-4aa4-9d7f-c3986f6acbf3","originalAuthorName":"吴武英"},{"authorName":"任卫华","id":"c38384c5-bc33-4c71-a766-8c3916af707f","originalAuthorName":"任卫华"},{"authorName":"徐林花","id":"250c445b-4211-4914-9af9-372c89e42d97","originalAuthorName":"徐林花"},{"authorName":"颉三刚","id":"638452a8-871c-46ef-89c9-12b330a8430e","originalAuthorName":"颉三刚"},{"authorName":"廖小军","id":"29c9992a-2374-40b9-b8ef-29ee38f3005b","originalAuthorName":"廖小军"},{"authorName":"谭树杰","id":"e81596ed-e6b1-4ba4-954d-1f5a1027d08e","originalAuthorName":"谭树杰"},{"authorName":"蒋磊","id":"c557669e-20e1-4d86-963d-8f700744f2e6","originalAuthorName":"蒋磊"}],"doi":"10.3969/j.issn.1001-9731.2015.18.019","fpage":"18092","id":"2e9fc284-a3ae-4fec-9828-4b48d5e45c5a","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9eab4c46-d9d9-4c3c-a227-f85f6b5b5b7a","keyword":"SiCp/Al 复合材料","originalKeyword":"SiCp/Al 复合材料"},{"id":"19df7cc8-b512-4c59-ad84-bac30cc27f51","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"5332fff5-c6fe-417e-a001-912d0f79d1ce","keyword":"微结构","originalKeyword":"微结构"},{"id":"c0e5261a-5b1a-4b8a-91d2-609b08174519","keyword":"界面","originalKeyword":"界面"},{"id":"8ef1ae61-9b50-4e28-969f-c49d510fdb41","keyword":"热导率","originalKeyword":"热导率"}],"language":"zh","publisherId":"gncl201518019","title":"SiCp表面化学镀对SiCp/Al复合材料微结构及热性能影响?","volume":"","year":"2015"},{"abstractinfo":"目的:提高牺牲阳极的阴极保护法在酸性土壤中对接地网的防腐能力,分析牺牲阳极阴极保护法在酸性土壤中应用的技术要点,总结保护效果优化措施。方法设计牺牲阳极模拟系统,模拟地网面积为3.52 m2,保护电流设计为35.2 mA,对Q235碳钢和镀锌钢两种常用接地材料的接地电阻、保护电位及保护电流进行研究。结果该方法对镀锌钢保护较好,保护电位均低于-0.95 V;对Q235碳钢保护较差,保护电位部分高于-750 mV,且波动较大,最大波幅可达201 mV。系统运行中,计算得出保护电流在降雨量较大时最高可达30.75 mA,降雨量较小时最低为11.89 mA,均低于设计值。结论由于阳极处砂石较多、土壤电阻率高,阳极不能完全释放电流。其次,土壤保水性差,电阻率波动大,系统运行不稳定也抑制了保护效果。酸性土壤盐基性离子大量淋失,土壤电阻率普遍较高,且受降雨扰动较大,牺牲阳极工作效率较低且稳定性差。需采用适当提高保护电流、降低阳极区土壤电阻率、优化阳极设计工艺参数等措施以达到良好的保护效果。","authors":[{"authorName":"杜鹏","id":"986b7591-965d-4d60-9e71-6f8f3f5aa7dd","originalAuthorName":"杜鹏"},{"authorName":"刘欣","id":"fb4a5763-845d-4570-b8df-8f3b5332ade1","originalAuthorName":"刘欣"},{"authorName":"郜友彬","id":"cb2e58e1-9bf6-4c0b-b34d-c641f11fb6c8","originalAuthorName":"郜友彬"},{"authorName":"李多生","id":"f65d60b0-dd41-4859-9006-a6b9c2fcdc86","originalAuthorName":"李多生"},{"authorName":"裴锋","id":"a33e0a00-da56-4c3a-ae36-c9eeed30ecb9","originalAuthorName":"裴锋"},{"authorName":"刘光明","id":"6519cbd7-2365-45a7-803e-1a0176c39d00","originalAuthorName":"刘光明"},{"authorName":"田旭","id":"bcd9fcfa-82c8-4857-9857-fd2903db88cd","originalAuthorName":"田旭"},{"authorName":"蒋磊","id":"1b7130e8-1b2a-43d1-8170-057826900d54","originalAuthorName":"蒋磊"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.10.019","fpage":"111","id":"0c6a0e69-7c3e-4860-973a-e804183dd28a","issue":"10","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"72d8b532-355e-42b4-ba73-17ab3df58cda","keyword":"酸性土壤","originalKeyword":"酸性土壤"},{"id":"d0c700f0-6ece-4ba7-85ea-0723e5fadd2b","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"e7685eb4-9a53-4401-894d-578d801bbe59","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"178c9aa7-59ec-4189-9a16-0b635ff24dcf","keyword":"接地电阻","originalKeyword":"接地电阻"},{"id":"59e628d2-a069-422c-93d1-6d37217d7732","keyword":"保护电位","originalKeyword":"保护电位"},{"id":"3ab14398-8ddd-47fb-8261-39dc91643f83","keyword":"保护电流","originalKeyword":"保护电流"}],"language":"zh","publisherId":"bmjs201510019","title":"酸性土壤中接地网牺牲阳极阴极保护法研究","volume":"","year":"2015"},{"abstractinfo":"本文详细介绍了5 kW遮蔽-增速垂直轴风力机的结构特点及主要参数。利用正交优化设计方法,采用计算流体力学软件,针对5 kW风力机,在叶片个数和遮蔽板安装位置半径一定的情况下,对翼型弦长、叶片转动扫掠面的半径、风轮旋转速度、遮蔽-增速板个数、遮蔽-增速板与叶片间的气动间隙以及遮蔽-增速板的安装角六个参数进行优化计算,找出一组最佳设计参数,进而设计出5 kW遮蔽-增速升力型垂直轴风力机,并对设计出的有遮蔽板与无遮蔽板两类型风力机的变工况特性进行比较分析。","authors":[{"authorName":"姬俊峰","id":"b7c826b7-ffb6-4e67-9517-d1f791f972a1","originalAuthorName":"姬俊峰"},{"authorName":"邓召义","id":"82f9acc1-62e6-4716-81ba-7fa1643986b1","originalAuthorName":"邓召义"},{"authorName":"蒋磊","id":"fd1d761b-067f-43ee-bbd5-0d2f706586b3","originalAuthorName":"蒋磊"},{"authorName":"黄典贵","id":"96e1b2f1-2ba6-4b99-abf0-30bb30e6f810","originalAuthorName":"黄典贵"}],"doi":"","fpage":"1139","id":"12344e20-3d99-43f0-9d01-d16adb7acd0a","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f76d81ad-2d22-41fa-b037-d0fb6fbd7fb7","keyword":"升力型垂直轴风力机","originalKeyword":"升力型垂直轴风力机"},{"id":"8bf4c231-da08-4ff2-9b00-369a1ae58d40","keyword":"遮蔽-增速","originalKeyword":"遮蔽-增速"},{"id":"5e65585d-e235-476c-8026-f9a511b7dd07","keyword":"正交优化设计","originalKeyword":"正交优化设计"},{"id":"48312aad-808c-4871-aa93-9a5926862472","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"9cd8bb19-ce84-4dbb-a308-6af4be4930f3","keyword":"变工况","originalKeyword":"变工况"}],"language":"zh","publisherId":"gcrwlxb201207012","title":"5kW遮蔽-增速升力型垂直轴风力机优化设计","volume":"33","year":"2012"},{"abstractinfo":"本文先用直流磁控溅射法分别在ITO导电玻璃基底上沉积TiO2和TiN二种纳米薄膜,再在500℃的马弗炉氧化性气氛下进行退火处理,制得TiO2/ITO和TiO2-xNx/ITO薄膜电极。样品的结构和成分用XRD和XPS进行表征。然后分别采用pH=10的Na2CO3/NaHCO3缓冲溶液和1M KOH水溶液作为电解液,在三电极体系中用线性扫描伏安法(LSV)和电流时间曲线(i-t)法测定二种薄膜电极在光照和暗态下的光电化学性能。研究结果表明:以1M KOH水溶液作为电解液比pH=10的Na2CO3/NaHCO3缓冲溶液作为电解液更有利于样品发挥其光催化活性;同时,TiO2-xNx/ITO薄膜电极比TiO2/ITO具有更好的光电化学性能。","authors":[{"authorName":"王春涛","id":"38aa5080-59bc-451a-9eb8-109e247e55c3","originalAuthorName":"王春涛"},{"authorName":"张文魁","id":"8c967137-8e01-4734-988a-d199afb3048b","originalAuthorName":"张文魁"},{"authorName":"蒋磊","id":"b4ffa65d-e75b-4c98-a2dd-28c0e433c55e","originalAuthorName":"蒋磊"},{"authorName":"石德苏","id":"55c649fc-3bda-4303-b760-f6f9ad2f5edc","originalAuthorName":"石德苏"}],"doi":"","fpage":"684","id":"a3025b39-59e9-47f4-943f-a1f4ffa399ea","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d3e6c5a0-b13f-446e-837b-022fcc3bc9b2","keyword":"电解液","originalKeyword":"电解液"},{"id":"96663cac-f01a-4702-9b92-e7f295ea0e1d","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"54f3d64d-0798-4d3c-8b83-3a5c96ff6f6d","keyword":"TiO2薄膜电极","originalKeyword":"TiO2薄膜电极"},{"id":"60c72f6e-e9da-487a-9020-3558cb3aa621","keyword":"光电化学性能","originalKeyword":"光电化学性能"}],"language":"zh","publisherId":"clkxygc201105007","title":"电解液对TiO_2薄膜电极光电化学性能的影响","volume":"29","year":"2011"},{"abstractinfo":"用腐蚀失重、X射线衍射等方法研究了AZ91、Q235、Al和Zn等材料的微生物腐蚀行为.结果表明,4种材料在无菌培养基中的平均腐蚀速度均大于在含菌培养基中的平均腐蚀速度;其中,AZ91的耐腐蚀性最差,Q235最好;各种材料在含菌培养基中,表面均形成生物膜,这层生物膜均抑制了4种材料的腐蚀.","authors":[{"authorName":"方世杰","id":"ed777900-2e5e-4b31-a4dc-0d6ad3affe76","originalAuthorName":"方世杰"},{"authorName":"刘耀辉","id":"9c3d6119-3cff-4713-a041-c7ec9eaece49","originalAuthorName":"刘耀辉"},{"authorName":"佟国栋","id":"d92ab8c3-617c-4f3e-a1fd-001f129de197","originalAuthorName":"佟国栋"},{"authorName":"王强","id":"ddefcc96-fd06-4a08-97e4-8a78541f1821","originalAuthorName":"王强"},{"authorName":"蒋磊","id":"f2c62742-ae03-4993-aa61-72a9cb7615c4","originalAuthorName":"蒋磊"},{"authorName":"于思荣","id":"798213c9-fbd5-4dca-81d4-14b1c4f35f88","originalAuthorName":"于思荣"}],"categoryName":"|","doi":"","fpage":"100","id":"cb77351a-e57b-4dc9-9fbb-fabbb22e76d9","issue":"2","journal":{"abbrevTitle":"FSKXYFHJS","coverImgSrc":"journal/img/cover/FSKXYFHJS.jpg","id":"24","issnPpub":"1002-6495","publisherId":"FSKXYFHJS","title":"腐蚀科学与防护技术"},"keywords":[{"id":"1770498e-8a96-48bc-aaa8-ec92e5e5a0c1","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"b5c73042-35c1-4182-b650-b6da71c81848","keyword":"null","originalKeyword":"null"},{"id":"24555ed8-f155-4b0b-9d31-88844a7e163c","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2008_2_13","title":"镁合金与其它金属的微生物腐蚀行为比较","volume":"20","year":"2008"},{"abstractinfo":"用腐蚀失重、X射线衍射等方法研究了 AZ91、Q235、Al和Zn等材料的微生物腐蚀行为.结果表明,4种材料在无菌培养基中的平均腐蚀速度均大于在含菌培养基中的平均腐蚀速度;其中,AZ91的耐腐蚀性最差,Q235最好;各种材料在含菌培养基中,表面均形成生物膜,这层生物膜均抑制了4种材料的腐蚀.","authors":[{"authorName":"方世杰","id":"ce3fa9cc-1cb9-4389-a300-d38a7b840e5e","originalAuthorName":"方世杰"},{"authorName":"刘耀辉","id":"d2ebb161-6652-4b2c-8835-6dfd15fc58d6","originalAuthorName":"刘耀辉"},{"authorName":"佟国栋","id":"35484dfe-5798-4cfb-b564-6ded79b54e99","originalAuthorName":"佟国栋"},{"authorName":"王强","id":"f252be27-27aa-4f67-941d-535047450640","originalAuthorName":"王强"},{"authorName":"蒋磊","id":"2f2afcbc-fafc-479b-9498-788f8d4dec1b","originalAuthorName":"蒋磊"},{"authorName":"于思荣","id":"726ec7a0-82d1-434a-b14b-c4bd1dd801ba","originalAuthorName":"于思荣"}],"doi":"10.3969/j.issn.1002-6495.2008.02.005","fpage":"100","id":"5b02e9b3-cebe-44a6-9e73-04684ab07ef2","issue":"2","journal":{"abbrevTitle":"FSKXYFHJS","coverImgSrc":"journal/img/cover/FSKXYFHJS.jpg","id":"24","issnPpub":"1002-6495","publisherId":"FSKXYFHJS","title":"腐蚀科学与防护技术"},"keywords":[{"id":"222fcec8-7285-4eca-9dbd-ebfbf740ce13","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"ad2776aa-a8e2-4092-96bb-5e0f6d805df1","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"9a654b2d-5d38-48e4-892f-aaa4b3623ead","keyword":"生物膜","originalKeyword":"生物膜"},{"id":"b5b17811-8d06-46c8-a028-29d2cca1a53b","keyword":"微生物腐蚀","originalKeyword":"微生物腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200802005","title":"镁合金与其它金属的微生物腐蚀行为比较","volume":"20","year":"2008"},{"abstractinfo":"由中国腐蚀与防护学会耐蚀金属材料专业委员会主办、南京德磊科技有限公司承办的第十一届全国化学镀会议(The 11 th China ElectrolessPlating Conference, CEPC - 11 )将于2012年9月24~27日在南京华茂国际大酒店召开。","authors":[],"doi":"","fpage":"65","id":"eb172c17-1dc2-49dc-92d2-283823114b6d","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"2d5e926f-225e-46a1-97f7-97defd0d615a","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"fb8e61e1-b683-4c58-9629-88003b418376","keyword":"专业委员会","originalKeyword":"专业委员会"},{"id":"3b7a1316-9d35-493a-80b7-d7a5d595f3ba","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"bf0c556c-81f7-46b2-bb6f-9ea962cb5e32","keyword":"南京","originalKeyword":"南京"},{"id":"6f41590b-0db3-4612-b91f-f0967aaaf957","keyword":"耐蚀","originalKeyword":"耐蚀"}],"language":"zh","publisherId":"clbh201208024","title":"第十一届全国化学镀会议","volume":"45","year":"2012"},{"abstractinfo":"由中国腐蚀与防护学会耐蚀金属材料专业委员会主办、南京德磊科技有限公司承办的第十一届全国化学镀会议(The 11th China Electroless Plating Conference,CEPC-11)将于2012年9月24~27日在南京华茂国际大酒店召开。本届会议主题:“发展绿色环保施镀技术,创新、拓宽先进功能产品”。","authors":[],"doi":"","fpage":"65","id":"80769155-77a5-4f93-a25f-04e5a20aecd9","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7cc422f7-ad62-4ddd-bf76-e4d47385b1eb","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"d14808cd-a3d7-4987-b13a-39321c4d97bd","keyword":"征文通知","originalKeyword":"征文通知"},{"id":"ec35060f-e482-499f-866a-21f44a679aa6","keyword":"专业委员会","originalKeyword":"专业委员会"},{"id":"2da120c6-a040-4112-abb9-f8f9ea2abe58","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"edad73de-90f2-4a48-a4fe-66fc83cd4324","keyword":"绿色环保","originalKeyword":"绿色环保"},{"id":"aab48c02-0b12-46ad-b8b8-0404296d11ab","keyword":"功能产品","originalKeyword":"功能产品"},{"id":"03767495-3146-4cf6-9655-e875a169ce0f","keyword":"工作者","originalKeyword":"工作者"},{"id":"c3d079b7-74a3-4b20-8787-dece82ea4421","keyword":"南京","originalKeyword":"南京"}],"language":"zh","publisherId":"clbh201206023","title":"第十一届全国化学镀会议(第二轮征文通知)","volume":"45","year":"2012"},{"abstractinfo":"通过对区域及矿区地质-地球化学资料的综合分析,总结了金山金矿床控矿地质-地球化学因素.金山-西蒋韧性剪切带和双桥山群上亚群及其中形成的金贫化-富集地球化学共轭异常是控制矿田的地质-地球化学因素.剪切带中次级非连续变形的晚期脆性形变构造、有利的围岩岩性和硅化及黄铁矿化蚀变是控制矿床及矿体的地质-地球化学因素.","authors":[{"authorName":"曾键年","id":"29bba4a6-a156-4419-a1b7-b8f591f11081","originalAuthorName":"曾键年"},{"authorName":"范永香","id":"32b5ddc5-c8c9-44aa-a250-bc08bbc736d1","originalAuthorName":"范永香"},{"authorName":"林卫兵","id":"67efbdf1-2a96-4e94-ba20-ab4abcea63c9","originalAuthorName":"林卫兵"}],"doi":"10.3969/j.issn.1001-1277.2003.01.003","fpage":"9","id":"a759681c-93bf-41cc-8320-5d5ecbc6d0ca","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"0aaeab16-5741-48cd-b2b4-3e6c517057b2","keyword":"金矿床","originalKeyword":"金矿床"},{"id":"732d89ee-5900-4bef-bd4d-ede652b9ed03","keyword":"地质-地球化学","originalKeyword":"地质-地球化学"},{"id":"bc87e68f-a89e-426f-9c7c-39fc97273497","keyword":"控矿因素","originalKeyword":"控矿因素"},{"id":"9f7a9f35-4f14-465c-98b2-dd7ddd814279","keyword":"江西金山","originalKeyword":"江西金山"}],"language":"zh","publisherId":"huangj200301003","title":"江西金山金矿床控矿地质-地球化学因素分析","volume":"24","year":"2003"},{"abstractinfo":"用异氰酸酯三聚体与二羟甲基丙酸(DMPA)先进行扩链反应,蒋用3,5-二甲基吡唑(DMP)将剩余的异氰酸酯基封闭,然后用二甲基乙醇胺(DMEA)中和成盐,制得可水分散型封闭异氰酸酯固化剂(WBI),并讨论了封闭比例[n(-H)∶n(-NCO)]、DMPA用量、反应温度、反应时间对制备水分散型封闭异氰酸酯固化剂的影响.采用傅里叶变换红外光谱(FT -IR)和差示扫描量热法(DSC)对封闭固化剂的结构进行了表征及分析,结果表明得到了预定结构产物,并且制备的封闭型多异氰酸酯固化剂可在较低温度( 130~ 150℃)实现解封.用合成的封闭异氰酸酯与环氧改性丙烯酸树脂制备了水性玻璃烘烤涂料,并对涂膜性能作了初步探讨.","authors":[{"authorName":"张汉青","id":"9e473ac2-134d-4a88-847f-90d4d257e882","originalAuthorName":"张汉青"},{"authorName":"胡中","id":"eaaf9515-7ab9-4927-b05a-789699125c0d","originalAuthorName":"胡中"},{"authorName":"陈卫东","id":"c7adc058-a399-44b8-b990-a75dd2384daa","originalAuthorName":"陈卫东"},{"authorName":"庄振宇","id":"4396b869-3e6f-4eea-b5e9-3bba36f70d10","originalAuthorName":"庄振宇"},{"authorName":"朱柯","id":"50ad87de-81bd-4f48-9064-f66312b868bd","originalAuthorName":"朱柯"},{"authorName":"祝宝英","id":"8130fe1b-bf32-404e-add5-41f35c191d2b","originalAuthorName":"祝宝英"},{"authorName":"许飞","id":"8bcc146f-43cd-47ee-992c-7862ec07ac1e","originalAuthorName":"许飞"}],"doi":"10.3969/j.issn.0253-4312.2012.10.005","fpage":"21","id":"150f6c9a-c5f0-4ab0-8a5b-2f4927b447f5","issue":"10","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"7a90fd45-33e6-4b30-b055-be4890b11747","keyword":"3,5-二甲基吡唑","originalKeyword":"3,5-二甲基吡唑"},{"id":"ad6f98dd-b0d9-4cc2-830c-a8b5c92c6e5a","keyword":"封闭多异氰酸酯","originalKeyword":"封闭多异氰酸酯"},{"id":"e3f96832-1fbe-4354-88f5-40f2738c4eaa","keyword":"固化剂","originalKeyword":"固化剂"}],"language":"zh","publisherId":"tlgy201210005","title":"3,5-二甲基吡唑封闭型水性异氰酸酯固化剂的合成及应用","volume":"42","year":"2012"}],"totalpage":2,"totalrecord":12}