{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了欧系整车厂中流行的免中涂涂装工艺(IPP),并以水性铝粉漆为例,讨论了各涂层膜厚、色漆闪干时间、预烘烤条件、喷涂参数对颜色和外观的影响,推荐了色漆和清漆的施工膜厚范围,研究了上述施工参数对铝粉定向排列的影响以及水性铝粉漆的颜色和外观特性.","authors":[{"authorName":"张立军","id":"8a167683-2ae8-46aa-b463-0b1297a43217","originalAuthorName":"张立军"},{"authorName":"胡玲","id":"56f2de5f-5d07-4ed6-8c1a-d5c09f251b27","originalAuthorName":"胡玲"},{"authorName":"郭书","id":"64525d2c-fce7-4a13-867a-cacda6388b8a","originalAuthorName":"郭书"},{"authorName":"苏海涛","id":"880bc3d8-6126-4dec-a865-5d2f8c3468b7","originalAuthorName":"苏海涛"}],"doi":"","fpage":"70","id":"aa8391f0-228b-4c77-8c92-829ea6f9e41b","issue":"5","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"c7c40392-0d73-46af-8b87-26ea4a2e084c","keyword":"水性铝粉漆","originalKeyword":"水性铝粉漆"},{"id":"a1280668-d69e-4df9-bf74-f800e72377eb","keyword":"颜色","originalKeyword":"颜色"},{"id":"72c9ed46-6835-4af5-a8c8-d2ea6fb02b42","keyword":"外观","originalKeyword":"外观"},{"id":"fe221687-d8bf-4695-822b-db343f870a6e","keyword":"膜厚","originalKeyword":"膜厚"},{"id":"1282e39f-fa9c-4bbf-92b2-7674132ad046","keyword":"预烘烤温度","originalKeyword":"预烘烤温度"},{"id":"9b153f34-0dca-4237-8b46-919c2e3710a6","keyword":"闪干时间","originalKeyword":"闪干时间"},{"id":"ac691474-87af-4743-9269-bc4397cb9de4","keyword":"铝粉定向排列","originalKeyword":"铝粉定向排列"}],"language":"zh","publisherId":"tlgy201605014","title":"施工工艺参数对水性汽车铝粉漆颜色和外观的影响","volume":"46","year":"2016"},{"abstractinfo":"微观组织定向排列能明显提高无机非金属材料的韧性,并产生力学和其它物理性能的各向异性,因此受到人们的广泛重视.主要介绍了当前实现玻璃陶瓷微观组织定向排列的3种不同方法的工艺过程及其理论基础,并展望了其应用前景.","authors":[{"authorName":"单小宏","id":"effbaebf-a6b1-4bfb-8b81-82ebb2b695d1","originalAuthorName":"单小宏"},{"authorName":"刘咏","id":"bb11c07d-37a1-4cb6-a3b3-59912a72e3e7","originalAuthorName":"刘咏"}],"doi":"","fpage":"69","id":"8dfd6ed4-6313-487e-a9ec-ea23874ca378","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b3079fda-da14-466b-aae2-b7f242fdce5c","keyword":"定向排列","originalKeyword":"定向排列"},{"id":"7abba895-fea4-4bb1-8498-3c1b4e84d60a","keyword":"玻璃陶瓷","originalKeyword":"玻璃陶瓷"},{"id":"9effa694-c47f-4746-b4e3-4b38ce44ff62","keyword":"工艺过程","originalKeyword":"工艺过程"},{"id":"8f43ca8a-1cc9-4811-a44c-5713e6388033","keyword":"理论基础","originalKeyword":"理论基础"},{"id":"97f4402a-fed9-4225-b0ea-44224fb1e8f7","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb200406021","title":"定向排列玻璃陶瓷的研究进展","volume":"18","year":"2004"},{"abstractinfo":"利用物理热蒸发法在1 016~1 066℃的温度范围内成功制备出定向排列生长的硅微米晶须.借助扫描电子显微镜(SEM),X射线能谱分析仪(EDX)和透射电子显微镜(TEM)研究了硅微米晶须的形貌、化学成分及晶体结构,讨论了环境压力对硅微米晶须生长有序性的影响.研究结果表明,在环境压力为13.3kPa时,硅微米晶须均垂直于衬底表面生长,定向排列生长的硅微米晶须面积可达13mm×6mm;硅微米晶须的生长遵循气-液-固(VLS)机制;透射电子显微镜观察及选取电子衍射花样表明,硅微米晶须的球形头部为晶体,杆的中部为晶体外包覆非晶体的结合体,杆的尾部为非晶体;环境压力越低,硅微米晶须的定向排列的方向性越好.","authors":[{"authorName":"于灵敏","id":"4311ba7c-1ad7-49fb-b322-383e6193ecdd","originalAuthorName":"于灵敏"},{"authorName":"范新会","id":"a904a1a7-3eff-45e6-913f-9e77b6740d57","originalAuthorName":"范新会"},{"authorName":"严文","id":"7e278315-4cae-4e2a-9d9d-18c2a6f361ab","originalAuthorName":"严文"}],"doi":"10.3969/j.issn.1004-244X.2004.03.014","fpage":"50","id":"e80e130c-8b58-43e6-a5a2-16e66bb6b8cf","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"9cf19fee-5eea-4a5a-b92d-73e7b6f105af","keyword":"硅微米晶须","originalKeyword":"硅微米晶须"},{"id":"fa48cec3-4ee8-417d-9c86-be731b9d4298","keyword":"定向排列","originalKeyword":"定向排列"},{"id":"46a8be01-8011-405c-a75a-fbac789dd20a","keyword":"环境压力","originalKeyword":"环境压力"}],"language":"zh","publisherId":"bqclkxygc200403014","title":"硅微米晶须的定向排列生长","volume":"27","year":"2004"},{"abstractinfo":"研究了大规模生产定向排列多壁碳纳米管的工艺.研究结果表明控制工艺参数,可以大幅度提高定向排列多壁碳纳米管的产率,使其达到用载体催化剂制造碳纳米管的水平.","authors":[{"authorName":"曾效舒","id":"309dc562-0011-4dcd-bd42-645497c876f5","originalAuthorName":"曾效舒"},{"authorName":"曹东","id":"1d6a0a62-7ffe-4e18-b997-46b4b3532320","originalAuthorName":"曹东"},{"authorName":"周泽华","id":"cfa6a80b-ea47-4fe7-a006-cbc4f0ce583f","originalAuthorName":"周泽华"},{"authorName":"孙晓刚","id":"9528cc47-3676-4298-8de4-1411808e5696","originalAuthorName":"孙晓刚"},{"authorName":"李才根","id":"3fb20e09-2945-4ee1-99d8-fbcbad656a80","originalAuthorName":"李才根"},{"authorName":"廖宝有","id":"747c5839-6592-416b-9b37-fff5e7b56206","originalAuthorName":"廖宝有"}],"doi":"10.3969/j.issn.1000-985X.2003.02.018","fpage":"175","id":"01f5df5c-a31b-4405-a958-d6c8c674b988","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"06988bc3-7a19-40c8-910e-7ad2702e4c4a","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"c6eb53da-0c27-41de-8272-9eccee397385","keyword":"阵列式","originalKeyword":"阵列式"},{"id":"c8b9c9a0-2b42-4a36-8475-546b265bab8c","keyword":"大规模生产","originalKeyword":"大规模生产"}],"language":"zh","publisherId":"rgjtxb98200302018","title":"大规模生长定向排列多壁碳纳米管工艺研究","volume":"32","year":"2003"},{"abstractinfo":"在外加电场的条件下,利用物理热蒸发法制备出定向排列的非晶硅纳米线,借助扫描电镜、X射线能谱分析仪和透射电镜等对硅纳米线进行了研究.结果表明:定向排列的硅纳米线以两种形式存在,一种是分散的平行排列,另一种是象麻花状的定向排列.同时,硅纳米线一般都处在两个结点之间;当电场不稳定时,可得到部分分叉的硅纳米线.","authors":[{"authorName":"于灵敏","id":"d200c6d2-a65d-44a5-a598-91298311cb93","originalAuthorName":"于灵敏"},{"authorName":"祁立军","id":"a97a3c81-7332-4a76-afc6-569adb970257","originalAuthorName":"祁立军"},{"authorName":"范新会","id":"f39363ae-69ab-4fb9-b71f-619d6f843c78","originalAuthorName":"范新会"},{"authorName":"刘建刚","id":"d5ee2f88-f964-43d1-b473-e5d88d6c9448","originalAuthorName":"刘建刚"},{"authorName":"严文","id":"7c421fc2-c181-4777-9a5f-51a10b7549d0","originalAuthorName":"严文"}],"doi":"10.3969/j.issn.1000-3738.2005.04.008","fpage":"23","id":"0fa44692-6f25-4816-88b6-221f3186ac32","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"5923c815-27a8-403f-aa53-be3c13bb752d","keyword":"硅纳米线","originalKeyword":"硅纳米线"},{"id":"7d8ead04-d595-40e7-8722-c112d887dd02","keyword":"定向排列","originalKeyword":"定向排列"},{"id":"f0068bae-19d9-4593-93a2-94c42adfa209","keyword":"外加电场","originalKeyword":"外加电场"}],"language":"zh","publisherId":"jxgccl200504008","title":"外加电场条件下制备定向排列的硅纳米线","volume":"29","year":"2005"},{"abstractinfo":"静电纺射流在溶液浓度相对较大的情况下鞭动不稳定性较小,而且会以电势梯度最大方向为轴发生高速旋转,基于该基本原理,借助于常规平面铝板作为接收装置,获得了高度定向排列的微/纳米纤维集合体。为了将该定向排列微/纳米纤维束作为原丝通过预氧化和炭化处理制备微/纳米炭纤维,研究了湿热牵伸处理对定向排列微/纳米纤维结晶度和力学性能的影响。结果表明,平面铝板作为接收装置获得的定向排列微/纳米纤维束的结晶度和强度均较低,仅分别为22.66%和(0.58±0.014)cN/dtex,而经过4倍湿热牵伸,纤维束的结晶度和强度分别达到45.90%和(3.02±0.014)cN/dtex,性能得到了显著提高。","authors":[{"authorName":"刘呈坤","id":"bb1b9667-7504-449d-93fa-697086f9bcbc","originalAuthorName":"刘呈坤"},{"authorName":"孙润军","id":"921feb58-f3ef-4005-b615-5f10bcdf90cb","originalAuthorName":"孙润军"},{"authorName":"陈美玉","id":"3fefbec1-a00d-4306-a376-cbce83c3badc","originalAuthorName":"陈美玉"},{"authorName":"张昭环","id":"b227588c-5529-4f58-b12e-054acee81669","originalAuthorName":"张昭环"}],"doi":"","fpage":"94","id":"3b50e50c-8f3e-40c9-ba13-d6da97d736a6","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"15ad302f-c69d-4e14-9f3b-4d8a075389f7","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"d646bffa-8d63-4793-be56-ebbe6cf73c26","keyword":"聚丙烯腈","originalKeyword":"聚丙烯腈"},{"id":"5780ddc5-ffc9-4f4c-8675-b32ac063fb19","keyword":"定向纤维","originalKeyword":"定向纤维"},{"id":"a98a7f8d-6403-4c99-8c92-f2458eb59c88","keyword":"湿热牵伸","originalKeyword":"湿热牵伸"},{"id":"4a749136-075a-434f-93c1-15e0d7e4cd8a","keyword":"结晶度","originalKeyword":"结晶度"},{"id":"55ad3d45-818d-4001-bc7b-713bf2866b39","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201112034","title":"静电纺定向排列微/纳米纤维束的湿热牵伸","volume":"27","year":"2011"},{"abstractinfo":"借助于高速摄影机"快摄慢放"的技术观察静电纺泰勒锥-射流区域的细节变化,在保证溶液供应量和射流喷射量一致而达到稳定纺丝的基础上,利用常规平面铝板作为接收装置获得了高度定向排列的微/纳米纤维集合体。结果表明,纤维的基本定向原理为在溶液浓度相对较大的情况下,射流的鞭动不稳定性较小,而且会以电势梯度最大方向为轴发生高速旋转,在高速旋转的过程中射流容易被拉直而形成定向排列纤维阵列。","authors":[{"authorName":"刘呈坤","id":"d8ffa983-76a5-40c0-b7ff-c4f1638e4b99","originalAuthorName":"刘呈坤"},{"authorName":"来侃","id":"08626d3e-d145-4389-8603-b74f44cd70f1","originalAuthorName":"来侃"},{"authorName":"孙润军","id":"6af1226b-3a26-46aa-b43d-8f8e93bbdfcf","originalAuthorName":"孙润军"},{"authorName":"陈美玉","id":"76a4c23d-f72d-4bba-9138-00c7cbfbaeb7","originalAuthorName":"陈美玉"}],"doi":"","fpage":"117","id":"90290c41-190e-4d5e-8ef8-b9f28a7f7b61","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4bd7c9b4-823d-4356-b85f-637e518483f9","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"fe8ca8d7-8b51-4232-8463-12ff3cecbbde","keyword":"聚丙烯腈","originalKeyword":"聚丙烯腈"},{"id":"aa35653b-e334-4805-adb7-cdc8adf6dbeb","keyword":"高速摄影","originalKeyword":"高速摄影"},{"id":"d12517a8-d0ec-4b17-8e82-6f09d1b0f6f6","keyword":"电场模拟","originalKeyword":"电场模拟"},{"id":"bb36a25d-9843-451f-9dfe-f843a4dff2ea","keyword":"纤维定向","originalKeyword":"纤维定向"}],"language":"zh","publisherId":"gfzclkxygc201206030","title":"静电纺丝法制备定向排列微/纳米纤维及其机理","volume":"28","year":"2012"},{"abstractinfo":"均苯四甲酸二酐和二氨基二苯醚溶解在N,N-二甲基乙酰胺中,室温下聚合为聚酰胺酸。以聚酰胺酸溶液作为前驱体,在20 kV电压下静电纺丝,然后进行350℃热亚胺化处理可得到定向排列的聚酰亚胺纳米纤维,再于900℃炭化、3000℃石墨化,得到均匀连续、定向排列的聚酰亚胺基炭纳米纤维,纤维直径约100 nm。结果表明,聚酰胺酸质量分数为20%的溶液电纺性能最佳,3000℃石墨化处理后的炭纳米纤维具有典型的石墨结构。","authors":[{"authorName":"张振兴","id":"f83847d9-b4e5-466a-af92-e26f6578ab5b","originalAuthorName":"张振兴"},{"authorName":"杜鸿达","id":"f0680578-851e-413a-87b3-ea6e243ccfeb","originalAuthorName":"杜鸿达"},{"authorName":"李佳","id":"ddfae022-32fc-41d8-9c46-fd89602b1897","originalAuthorName":"李佳"},{"authorName":"干林","id":"cf4239c7-e149-466b-9b7f-d0c48391f43c","originalAuthorName":"干林"},{"authorName":"郑心纬","id":"67b7d78a-dfd3-4bcf-8623-4dfaec0fee7c","originalAuthorName":"郑心纬"},{"authorName":"李宝华","id":"7f00a2d1-6019-479f-95e0-f7c43737da9f","originalAuthorName":"李宝华"},{"authorName":"康飞宇","id":"d79d9542-9087-4bd1-89b5-b0481c7aa1de","originalAuthorName":"康飞宇"}],"doi":"","fpage":"289","id":"0e48bd8a-68ba-46be-857d-827337e83659","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"eff21b48-1728-4daa-ba72-a56a3ff3a370","keyword":"炭纳米纤维","originalKeyword":"炭纳米纤维"},{"id":"c9449fca-a9c7-4625-9c0a-d07b2f6576a6","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"e8718648-0c09-4cdb-b6c1-3486abb3a5be","keyword":"定向排列","originalKeyword":"定向排列"}],"language":"zh","publisherId":"xxtcl201504001","title":"静电纺丝制备定向排列聚酰亚胺基炭纳米纤维","volume":"","year":"2015"},{"abstractinfo":"将流速梯度场与静电纺丝设备相结合,利用原位本体聚合方法,制备了超长的PMMA/CNT复合纳米丝,并实现了纳米丝的有序收集和CNTs在其内部的定向排列.通过SEM、FT-IR、TEM检测表明所制备的超长复合纳米丝直径约为100nm,长度可达数米,且光滑连续、平行排列;CNTs在复合纤维中均匀分散,沿轴向平行排列,且与PMMA分子间存在化学键;CNTs质量分数为8%时,复合纤维电导率比纯PMMA提升了10个数量级;通过偏振拉曼光谱得到了CNTs的定向因子;分析了石英毛细管内部纺丝液对CNTs取向一致的诱导作用.","authors":[{"authorName":"戴怡乐","id":"72a422a7-e8ff-45c6-8edb-63ad2620ed80","originalAuthorName":"戴怡乐"},{"authorName":"戴剑锋","id":"75100ddf-3579-48b3-b99a-bc83ea4ae2cc","originalAuthorName":"戴剑锋"},{"authorName":"孙毅彬","id":"87ae9f59-526a-4a7b-ae7c-d9514d3fcd9d","originalAuthorName":"孙毅彬"},{"authorName":"李星","id":"e46ceabd-1acb-4855-8126-619ddf9f31ef","originalAuthorName":"李星"},{"authorName":"赵沛","id":"bdfa3fc0-9bed-4531-9c32-e9f65646c0b8","originalAuthorName":"赵沛"},{"authorName":"王青","id":"df3d7dd2-e976-4523-a40c-269b35bc5756","originalAuthorName":"王青"},{"authorName":"李维学","id":"918b8601-ea8c-4528-ac0a-e1854e113b7a","originalAuthorName":"李维学"}],"doi":"","fpage":"101","id":"00fe6d5a-23e1-4ee5-a95c-6d556ecdfa49","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"8dc78642-f025-436e-956c-7b522441c6b0","keyword":"超长纳米纤维","originalKeyword":"超长纳米纤维"},{"id":"18136980-f499-44a8-abed-71b7c0aca2a3","keyword":"碳纳米管定向","originalKeyword":"碳纳米管定向"},{"id":"a6f493bb-2383-4ff9-8063-83b29a7804f4","keyword":"Poiseuille流","originalKeyword":"Poiseuille流"},{"id":"dd91dd1c-5b45-41a1-8174-f24755d0e123","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"c5c494cd-e023-4cbd-a37b-e357d5f8ee92","keyword":"偏振拉曼光谱分析","originalKeyword":"偏振拉曼光谱分析"}],"language":"zh","publisherId":"xxtcl201302004","title":"静电纺丝法实现CNTs在超长复合纳米丝中的定向排列","volume":"28","year":"2013"},{"abstractinfo":"基于有效介质理论(Effective-Medium Theory,EMA)模拟计算了碳纳米管(Carbon Nanotubes,CNTs)定向排列的CNTs复合材料的电导率及其渗流阈值.结果表明复合材料的电导率及渗流阈值强烈地依赖于CNTs的定向度、长径比和结构.通过计算复合材料电导率的增长率随CNTs含量的关系曲线,可确定出电导率的渗流阈值,其结果与实验基本符合,并对存在的差异给予了合理的解释.","authors":[{"authorName":"戴剑锋","id":"02f11d07-5036-4f2c-9b82-e1816f3c7375","originalAuthorName":"戴剑锋"},{"authorName":"高建龙","id":"e506b736-4297-474a-8a93-2847c251b4e0","originalAuthorName":"高建龙"},{"authorName":"乔宪武","id":"b65c9fa2-90e8-4dfa-b788-26027f011248","originalAuthorName":"乔宪武"},{"authorName":"王青","id":"504d9a13-0c94-4e66-93d0-a789a6dd18f7","originalAuthorName":"王青"},{"authorName":"李维学","id":"64c92163-14a1-4e0b-a1cd-6a2bcaa401b5","originalAuthorName":"李维学"},{"authorName":"杜晓芳","id":"f1ea7964-eb8e-4688-8a77-b9c75be4831e","originalAuthorName":"杜晓芳"}],"doi":"10.3969/j.issn.1001-4381.2008.10.001","fpage":"1","id":"e1780b98-9c4d-4c3a-9ca7-5f7b5c8dff4f","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"48b50ebc-6816-429d-affe-e07e1956a6d0","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"97cd58b2-b28f-46a6-9884-f54cda429dde","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"371f0054-122b-4592-86f4-b4207880f8df","keyword":"电导率","originalKeyword":"电导率"},{"id":"b132093b-c810-4bb4-9a5d-742e39e5edaa","keyword":"渗流阈值","originalKeyword":"渗流阈值"}],"language":"zh","publisherId":"clgc200810001","title":"CNTs定向排列的CNTs/PMMA电导率低突增效应研究","volume":"","year":"2008"}],"totalpage":356,"totalrecord":3555}