{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚苯乙烯微球离心后形成的三维规则排列的胶晶作模板,用钛酸丁酯和正硅酸乙酯分别和水、乙醇等配制成的混合溶胶填充微球之间的间隙,然后原位形成凝胶,最后通过焙烧(<5℃/min;300℃,5h;570℃,5~10h,空气流速1L/min)除去微球得到三维规则排列的大孔钛硅混合氧化物.样品表面可观察到五颜六色的彩光.样品的SEM图表明,球形孔大小均匀,排列整齐,孔壁填充完全.孔径在500nm左右,孔的排列呈面心立方结构,孔与孔之间由小孔窗相互交连.较高的溶胶浓度有利于溶胶的填充,容易形成孔壁较厚的坚固的三维骨架.低浓度得到的样品孔壁薄,缺陷多,易脆裂.样品的EDS表明Si/Ti的摩尔比为2.7,XRD研究表明孔壁具有无定形的结构.","authors":[{"authorName":"沈勇","id":"35e4421f-65ff-4686-a28e-b1e8e6651d28","originalAuthorName":"沈勇"},{"authorName":"邬泉周","id":"a496c4f5-a977-4c68-87c8-8a82e38eddaf","originalAuthorName":"邬泉周"},{"authorName":"廖菊芳","id":"73aba1fb-7764-401f-a530-4c4470e1ae26","originalAuthorName":"廖菊芳"},{"authorName":"李玉光","id":"8ac9af91-6d68-4c4a-97f7-c0f9aa1bc251","originalAuthorName":"李玉光"}],"categoryName":"|","doi":"","fpage":"401","id":"1ad1c79a-92cc-42be-978e-2d758c584673","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1e0581f6-187e-434c-ad59-70d86cef5d89","keyword":"钛硅混合氧化物","originalKeyword":"钛硅混合氧化物"},{"id":"04baa83b-aaaf-4360-b3aa-9ebfd166c309","keyword":" three-dimensionally ordered macroporous","originalKeyword":" three-dimensionally ordered macroporous"},{"id":"851a35b6-eef4-496a-ba52-53bcc35219e4","keyword":" polystyrene sphere","originalKeyword":" polystyrene sphere"},{"id":"60d549a0-ebaa-45ec-8aa5-424c1ed04030","keyword":" colloid crystal","originalKeyword":" colloid crystal"}],"language":"zh","publisherId":"1000-324X_2003_2_20","title":"三维规则排列的大孔钛硅混合氧化物的制备与表征","volume":"18","year":"2003"},{"abstractinfo":"以SnCl2-2H2O和正硅酸乙酯为原料,用微球直径为585nm的聚苯乙烯胶晶为模板,制备了三维有序大孔SnO2和SnO2/SiO2材料。SEM观察表明,直接用SnCl2的乙醇溶液为前驱物溶液,难以形成有序的大孔结构,加入正硅酸乙酯或将SnCl2溶液转变为氧化物溶胶,则得到的大孔材料孔结构三维有序排列相当好,孔径为453-500nm,孔与孔之间通过小孔相连。XRD分析表明,大孔材料孔壁由晶粒直径约为17nm SnO2粒子构成。","authors":[{"authorName":"邬泉周","id":"6535c81f-4da5-4054-ab1c-0863f1c26e06","originalAuthorName":"邬泉周"},{"authorName":"沈勇","id":"c35cae82-06bb-4d10-b5e4-03a420f9cf65","originalAuthorName":"沈勇"},{"authorName":"孙振范","id":"dea9cba3-d41c-4b9d-920f-795c1d96bc62","originalAuthorName":"孙振范"},{"authorName":"李玉光","id":"cd0142a2-f891-4a1f-8dd9-ff395deb6949","originalAuthorName":"李玉光"}],"categoryName":"|","doi":"","fpage":"939","id":"1d89d97e-285a-4227-91fa-7728be32f97a","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"38d0e863-bfb4-4e55-8dea-06376e4168d2","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"a5d1d80d-bf76-45e8-a67f-8d59ac8172da","keyword":" polystyrene","originalKeyword":" polystyrene"},{"id":"0ff4cefa-0f71-49cc-a468-f71dccadd30e","keyword":" three-dimensional ordered macroporous","originalKeyword":" three-dimensional ordered macroporous"},{"id":"09f9e2e1-e974-45f4-9480-f942a52ffe6d","keyword":" SnO2","originalKeyword":" SnO2"}],"language":"zh","publisherId":"1000-324X_2004_4_1","title":"三维有序大孔SnO2及SnO2/SiO2材料的制备及结构特征","volume":"19","year":"2004"},{"abstractinfo":"用自然沉降法组装成规则排列的聚苯乙烯胶晶,并以此作为模板剂,用Keggin结构的杂多酸SiW12 和正硅酸乙酯组成溶胶作为先驱物,成功制备了三维有序大孔(3DOM)SiW12/SiO2杂化材料. XRD和IR等测试结果表明,所得样品中的杂多酸SiW12 能够保持其Keggin结构,SEM观察显示,样品具有三维大孔规则排列的结构. 研究发现,溶胶组成对杂化材料的3DOM结构影响很大,纯SiW12 难以形成3DOM结构,随着SiO2含量的增加,样品的孔结构三维规整性和强度明显增强,而且引入SiO2可有效提高杂多酸的热稳定性.","authors":[{"authorName":"尹强","id":"598000ed-f780-47e1-bffe-1e006f277ed1","originalAuthorName":"尹强"},{"authorName":"邬泉周","id":"4c9f6394-cb67-47d6-85e0-ab203734b5fe","originalAuthorName":"邬泉周"},{"authorName":"廖菊芳","id":"fee55052-ef2c-4046-98cb-9dc713a1746b","originalAuthorName":"廖菊芳"},{"authorName":"邓景衡","id":"294fe2fe-d8ad-4be4-bf63-f391b469da86","originalAuthorName":"邓景衡"},{"authorName":"李玉光","id":"d4d7c51b-b0c0-423c-b399-38ace3e4c8bb","originalAuthorName":"李玉光"}],"doi":"","fpage":"889","id":"afbb73ce-3035-45e4-aff7-61fdab86eb96","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"54b6b445-0d2a-4284-b45b-16bd392784d4","keyword":"杂多酸","originalKeyword":"杂多酸"},{"id":"22616b78-94e5-4056-9a1b-40f0d19ff301","keyword":"Keggin结构","originalKeyword":"Keggin结构"},{"id":"9af2cb73-4993-45a3-af73-3e29ddc89d21","keyword":"三维有序大孔","originalKeyword":"三维有序大孔"},{"id":"0da751b1-788d-4dec-94d2-7ec3fd75edc9","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"9428fe94-d8ef-4948-a1b2-e8d578e6d4d0","keyword":"胶晶","originalKeyword":"胶晶"}],"language":"zh","publisherId":"cuihuaxb200510015","title":"三维有序大孔SiW12/SiO2杂化材料的制备及表征","volume":"26","year":"2005"},{"abstractinfo":"以聚苯乙烯微球离心后形成的三维规则排列的胶晶作模板,用钛酸丁酯和正硅酸乙酯分别和水、乙醇等配制成的混合溶胶填充微球之间的间隙,然后原位形成凝胶,最后通过焙烧(<5℃/min;300℃,5h;570℃,5~10h,空气流速1L/min)除去微球得到三维规则排列的大孔钛硅混合氧化物.样品表面可观察到五颜六色的彩光.样品的SEM图表明,球形孔大小均匀,排列整齐,孔壁填充完全.孔径在500nm左右,孔的排列呈面心立方结构,孔与孔之间由小孔窗相互交连.较高的溶胶浓度有利于溶胶的填充,容易形成孔壁较厚的坚固的三维骨架.低浓度得到的样品孔壁薄,缺陷多,易脆裂.样品的EDS表明Si/Ti的摩尔比为2.7,XRD研究表明孔壁具有无定形的结构.","authors":[{"authorName":"沈勇","id":"174ce1fd-ffeb-41a7-810f-6f5d84605979","originalAuthorName":"沈勇"},{"authorName":"邬泉周","id":"336e29a0-724f-4cb9-9b57-c0c178fb3d20","originalAuthorName":"邬泉周"},{"authorName":"廖菊芳","id":"8b036927-506a-4809-a23e-302384af8b01","originalAuthorName":"廖菊芳"},{"authorName":"李玉光","id":"cf07cd4b-edc7-42d7-97b3-ea230ebf0732","originalAuthorName":"李玉光"}],"doi":"10.3321/j.issn:1000-324X.2003.02.024","fpage":"401","id":"07e3dce5-4301-451c-94b4-9e5f0075a341","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"10b77755-39ab-4846-a592-23f59fdfa064","keyword":"钛硅混合氧化物","originalKeyword":"钛硅混合氧化物"},{"id":"4e7e552a-1851-40ab-8789-a166ca79ff31","keyword":"三维规则排列大孔(3DOM)","originalKeyword":"三维规则排列大孔(3DOM)"},{"id":"1a5171dc-7dcf-47a6-906a-1cc3d32669b8","keyword":"聚苯乙烯微球","originalKeyword":"聚苯乙烯微球"},{"id":"7fdcba0d-fe2c-4ec7-b06c-e1c301e7bd84","keyword":"胶晶","originalKeyword":"胶晶"}],"language":"zh","publisherId":"wjclxb200302024","title":"三维规则排列的大孔钛硅混合氧化物的制备与表征","volume":"18","year":"2003"},{"abstractinfo":"以SnCl2·2H2O和正硅酸乙酯为原料,用微球直径为585nm的聚苯乙烯胶晶为模 板,制备了三维有序大孔SnO2和SnO2/SiO2材料.SEM观察表明,直接用SnCl2的乙醇溶 液为前驱物溶液,难以形成有序的大孔结构,加入正硅酸乙酯或将SnCl2溶液转变为氧化物溶 胶,则得到的大孔材料孔结构三维有序排列相当好,孔径为453~500nm,孔与孔之间通过小孔相连.XRD分析表明,大孔材料孔壁由晶粒直径约为17nm SnO2粒子构成.","authors":[{"authorName":"邬泉周","id":"3ec02f42-6a4c-44b4-88b8-22c629b9a085","originalAuthorName":"邬泉周"},{"authorName":"沈勇","id":"c88d19ec-6666-4366-b4b8-d8e763fa4d88","originalAuthorName":"沈勇"},{"authorName":"孙振范","id":"0cf49b4b-950f-4152-b025-3995ba512982","originalAuthorName":"孙振范"},{"authorName":"李玉光","id":"dcaaa14b-b587-486e-917b-23727db847c2","originalAuthorName":"李玉光"}],"doi":"10.3321/j.issn:1000-324X.2004.04.040","fpage":"939","id":"71ecf974-e26a-40dc-9200-05198123ddce","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a31cd7a9-5d84-448f-9991-131dc940c0e2","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"1d10c929-5b55-4bc8-9a92-7fbe65940fc3","keyword":"胶晶","originalKeyword":"胶晶"},{"id":"94f34f49-30f7-437c-9f47-297bad0a6ba6","keyword":"三维有序大孔","originalKeyword":"三维有序大孔"},{"id":"c60f3b4c-6ab3-4bc7-a973-f42aadbad3bf","keyword":"SnO2","originalKeyword":"SnO2"}],"language":"zh","publisherId":"wjclxb200404040","title":"三维有序大孔SnO2及SnO2/SiO2材料的制备及结构特征","volume":"19","year":"2004"},{"abstractinfo":"以聚苯乙烯微球离心后形成的三维规则排列的胶晶作模板,以正硅酸乙酯、水、乙醇和盐酸等配制的溶胶填充微球间的间隙,然后原位形成凝胶,最后通过焙烧除去微球得到三维规则排列大孔二氧化硅材料. 以苯乙烯为原料,过硫酸钾为引发剂,在70 ℃下搅拌28 h后得到含聚苯乙烯微球(直径约为600 nm)的母液. 将母液在900~1000 r/min的转速下离心12~24 h得到紧密堆积排列的胶晶. 以正硅酸乙酯作为硅源,按n(Si(OEt)4)∶n(EtOH)∶n(HCl)∶n(H2O)=1∶3.9∶0.3∶1.8制成透明的SiO2溶胶. 溶胶浓度控制在0.5~1.0 mol/L. 滴加在胶晶上的溶胶靠毛细管的作用力填充入微球间隙. 重复填充多次(一般不超过5次). 焙烧在流量为1 L/min的空气中进行,升温速度控制在5 ℃/min以下. 在300 ℃下恒温5 h以除去聚苯乙烯微球,在570 ℃下焙烧5 h. 焙烧后的样品表面可观察到五颜六色的彩光. SEM分析结果表明,球形孔(孔径约500 nm)大小均匀,排列整齐,保持了微球的紧密堆积排列结构. 孔与孔之间由小孔窗相互交连,孔壁比较充实,壁厚约为130 nm. ","authors":[{"authorName":"沈勇","id":"6b4f8c37-f9e4-476d-9cf4-0103aa3021e7","originalAuthorName":"沈勇"},{"authorName":"邬泉周","id":"e5656baf-7a67-4f5c-9533-0239c5e1faee","originalAuthorName":"邬泉周"},{"authorName":"李玉光","id":"4503e221-0111-4264-977d-77c2ce32f4ea","originalAuthorName":"李玉光"}],"doi":"","fpage":"179","id":"b0458e37-7b16-444c-b9ff-4f2c26f327d4","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8c53eaef-c1d6-41e5-bed8-ab9f7784975f","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"f49a42f3-5e41-47b9-b5fe-d1cad3fdcc1e","keyword":"三维规则排列大孔","originalKeyword":"三维规则排列大孔"},{"id":"fcfa37ae-b1a3-4b1a-9735-5be33ee4def3","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"8145a477-50eb-48e7-853b-2a0634250ca2","keyword":"微球","originalKeyword":"微球"},{"id":"30da6e05-8d5f-40b3-a434-0b9c329cb2d3","keyword":"胶晶","originalKeyword":"胶晶"}],"language":"zh","publisherId":"cuihuaxb200202023","title":"三维规则排列的大孔SiO2材料的制备及表征","volume":"23","year":"2002"},{"abstractinfo":"以聚苯乙烯胶晶为模板,3-氨基-丙基-三乙氧基硅烷和正硅酸乙酯为前驱物,合成了三维有序大孔(3DOM)氨基功能化SiO2-NH2材料. SEM观察表明,合成的3DOM材料具有规则整齐的大孔通孔结构,平均孔径在535~596 nm之间,孔径收缩率为4.8%~14.5%. FTIR分析表明,材料中含有氨基等有机基团. BET分析表明,材料的比表面积为10.2 m2/g. 合成的3DOM SiO2-NH2材料对Cr(Ⅵ)离子的吸附能力随着材料中氨基含量的增加而增大,最大吸附量为4.31 mmol/g.","authors":[{"authorName":"邬泉周","id":"37babc96-71c3-4021-ad6d-af31de72679b","originalAuthorName":"邬泉周"},{"authorName":"何建峰","id":"2450657a-3be7-421d-98a5-d1efbdb8eb8d","originalAuthorName":"何建峰"},{"authorName":"李玉光","id":"49abe366-522c-430d-b0b2-27302515f735","originalAuthorName":"李玉光"}],"doi":"10.3969/j.issn.1000-0518.2009.03.029","fpage":"367","id":"781e1136-e6b7-4770-b292-2b6b8cde16c8","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"da7318de-3370-49dd-9701-d170886ac3eb","keyword":"三维有序大孔","originalKeyword":"三维有序大孔"},{"id":"2328d012-9eb6-4697-abee-e9168d91c3d8","keyword":"氨基","originalKeyword":"氨基"},{"id":"9630d833-cebf-4531-8c62-b0351cef7e9e","keyword":"功能化","originalKeyword":"功能化"},{"id":"227779c1-de71-4ea7-a32a-ef25a30e9c87","keyword":"材料","originalKeyword":"材料"}],"language":"zh","publisherId":"yyhx200903029","title":"三维有序大孔氨基功能化材料的制备及其对Cr(Ⅵ)的吸附性能","volume":"26","year":"2009"},{"abstractinfo":"南泉银(金)矿床位于甘肃北山南带花牛山地体中,成矿地质环境复杂,构造-岩浆-热液活动强烈.着重论述了矿床地质特征及控矿因素,对矿床成因进行了探讨,并指出南泉银(金)矿床是与印支晚期-燕山早期钾长花岗岩有关的岩浆期后热液矿床.","authors":[{"authorName":"李育森","id":"b7359a94-fc6b-4a07-a82b-b557a094fbb6","originalAuthorName":"李育森"}],"doi":"10.3969/j.issn.1001-1277.2010.07.005","fpage":"16","id":"e2e8d4c5-b4b5-46a3-ad80-43709fe65e60","issue":"7","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"465a6c6e-4b09-4c18-8725-a78e30ec4f39","keyword":"关键词","originalKeyword":"关键词"},{"id":"482a0706-0e6f-4f9f-ab17-a11056059782","keyword":"南泉银(金)矿床","originalKeyword":"南泉银(金)矿床"},{"id":"fb35257b-fef5-47df-a28b-b86b0b9b6a92","keyword":"地质特征","originalKeyword":"地质特征"},{"id":"90b1deff-3e57-41f4-abf7-b9bad48d6960","keyword":"控矿因素","originalKeyword":"控矿因素"},{"id":"fc4b22d0-ee79-4ec8-8b73-f855eda30337","keyword":"矿床成因","originalKeyword":"矿床成因"}],"language":"zh","publisherId":"huangj201007005","title":"甘肃北山南泉银(金)矿床地质特征及成因探讨","volume":"31","year":"2010"},{"abstractinfo":"为迅速查明双泉金矿区清水—苏吉泉断裂带中矿脉分布特征、矿化富集地段及矿区构造带的分布特征,扩大远景规模,在矿区开展了约4 km2的激电法勘探工作。通过对矿区视极化率和视电阻率的测量,在双泉金矿区成功圈定了1条含矿破碎带PSD3,并在破碎带内发现了2条含金矿脉,为在丘陵和戈壁滩干旱区寻找金矿床提供了一个很好的范例。实践证明,只要科学选择物探方法,合理确定技术参数,改善接地条件,运用激电法在戈壁滩干旱区,进行勘查“低阻高极化”矿体,能取得很好的找矿效果。","authors":[{"authorName":"孙宗席","id":"6adf31d5-87a9-436e-97a0-3aaef44cf077","originalAuthorName":"孙宗席"},{"authorName":"刘桂阁","id":"282e637f-9e98-4a31-beee-b3ec9134f8cb","originalAuthorName":"刘桂阁"},{"authorName":"李己华","id":"43d764e4-7cfb-4701-93d5-f7e5400741a2","originalAuthorName":"李己华"},{"authorName":"吴继承","id":"dcc16dfc-a00b-44ba-9b10-cb739a77ca44","originalAuthorName":"吴继承"}],"doi":"10.11792/hj20150204","fpage":"12","id":"b903ed76-780b-402a-a834-588113afc634","issue":"2","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"8ec25c71-016e-40be-907d-96a1381084b4","keyword":"双泉金矿区","originalKeyword":"双泉金矿区"},{"id":"26d364d1-e392-49db-af01-9d502754f629","keyword":"激电法","originalKeyword":"激电法"},{"id":"dab4f446-da47-4ab4-a21c-2806ed2753f1","keyword":"视电阻率","originalKeyword":"视电阻率"},{"id":"26674622-a07a-4d38-9356-270a8c745673","keyword":"视极化率","originalKeyword":"视极化率"},{"id":"7f56caef-24bc-44b0-b08c-1b568ce80f5f","keyword":"新疆","originalKeyword":"新疆"}],"language":"zh","publisherId":"huangj2015020007","title":"激电法在新疆双泉金矿区的应用效果","volume":"","year":"2015"},{"abstractinfo":"对泉山金矿氰化尾矿进行了焙烧预处理—超声波强化硫脲浸金试验研究.其结果表明:该尾矿经焙烧后硫脲浸出,金的最高浸出率比未焙烧时提高了45.12%;尾矿焙烧后再经超声波强化硫脲浸出,金的最高浸出率进一步提高了9.6%,达到77.5%,且大大缩短了浸出时间,提高了浸金效率.","authors":[{"authorName":"许世伟","id":"efdc9a2b-95fa-41b3-9a0c-4e025786c976","originalAuthorName":"许世伟"},{"authorName":"王建英","id":"4cdfbcba-c780-4b82-907f-8dfdcdece97b","originalAuthorName":"王建英"},{"authorName":"郑升","id":"4cc73672-5a58-47db-a7d0-42281836765e","originalAuthorName":"郑升"},{"authorName":"郑春丽","id":"6255858c-97d6-47cb-b320-8ed5e9feadfa","originalAuthorName":"郑春丽"}],"doi":"10.11792/hj20130513","fpage":"49","id":"ffc8300c-338b-459d-83a8-a9a32f3d0e8e","issue":"5","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"17ad5487-2ebc-45c4-87dc-8363ea8b2819","keyword":"金氰化尾矿","originalKeyword":"金氰化尾矿"},{"id":"0bb7f25b-2492-47a8-9f72-1781006e9ef8","keyword":"焙烧","originalKeyword":"焙烧"},{"id":"ee4cc022-8f71-4f4d-9a5f-e5c4da233ff9","keyword":"超声波","originalKeyword":"超声波"},{"id":"0de657a2-0610-4a0d-9019-84ad16e40bb4","keyword":"硫脲","originalKeyword":"硫脲"},{"id":"e0e99ef5-348c-4a89-88a8-fc7ea82e3113","keyword":"金浸出率","originalKeyword":"金浸出率"}],"language":"zh","publisherId":"huangj201305021","title":"泉山金矿氰化尾矿焙烧—超声波强化硫脲提金试验研究","volume":"","year":"2013"}],"totalpage":152,"totalrecord":1520}