{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用正交设计优化法研究了硫酸+焦硫酸钾湿法熔融(化学法)分解碳氮化钛,以较少的实验次数确定了蒸馏分离和试样分解的最佳分析条件,通过条件实验,建立了相应的分析方法,测定结果与惰气熔融热导法一致.","authors":[{"authorName":"钟华","id":"f3ee6eb7-1a0a-4111-bde2-454fb74be81f","originalAuthorName":"钟华"}],"doi":"10.3969/j.issn.1004-7638.2005.01.014","fpage":"65","id":"9aa0fa83-4185-4f99-bda8-4a6485585aec","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"83007930-24e2-4871-84ad-105bcc7b98d9","keyword":"化学法","originalKeyword":"化学法"},{"id":"16fa330d-f460-4a73-b73d-dd05a427e6d4","keyword":"湿法熔融","originalKeyword":"湿法熔融"},{"id":"3e129beb-2710-42d8-bb07-400a4b88cb64","keyword":"蒸馏分离","originalKeyword":"蒸馏分离"},{"id":"84ac1ef6-667c-431f-8159-304d98895269","keyword":"碳氮化钛","originalKeyword":"碳氮化钛"},{"id":"c6f35e25-d445-467e-9a97-014e9ef0c31b","keyword":"氮","originalKeyword":"氮"},{"id":"0d257c0a-72e5-4876-aace-40ea77fdd498","keyword":"正交设计","originalKeyword":"正交设计"}],"language":"zh","publisherId":"gtft200501014","title":"化学法测定碳氮化钛中氮含量","volume":"26","year":"2005"},{"abstractinfo":"片状纳米银粉由于小尺寸效应、表面积大、导电性高等显示出其独特的性能,在电子、催化、能源和生物等方面有着广阔的应用前景.近年来,采用化学法来制备片状纳米银粉备受人们关注.本文从制备方法、制备机理、影响因素等方面评述了化学法制备片状纳米银粉的最新研究进展,展望了今后研究的方向.","authors":[{"authorName":"李芝华","id":"36504141-5b00-4d5b-a4bb-ef5869c66a3c","originalAuthorName":"李芝华"},{"authorName":"王炎伟","id":"33631865-0ee8-4e4a-88f0-7787f3a7eedd","originalAuthorName":"王炎伟"},{"authorName":"卢健体","id":"9f3c0442-39a1-4f73-a447-14459c4109b0","originalAuthorName":"卢健体"},{"authorName":"于倩倩","id":"c0f54353-6672-4ca4-a244-82423f26a521","originalAuthorName":"于倩倩"}],"doi":"","fpage":"1119","id":"40b6e27d-b4ad-4ba7-8fbe-42a8f5a03072","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"58a393e4-9e5a-4547-a15a-75c2d246c8a3","keyword":"片状纳米银粉","originalKeyword":"片状纳米银粉"},{"id":"b709e5a6-825d-4db7-84f3-6f977a2d52d0","keyword":"化学法","originalKeyword":"化学法"},{"id":"85cf9f9a-0289-474a-a472-a0a9efa06427","keyword":"制备","originalKeyword":"制备"},{"id":"26a80caf-3e42-4d4e-9254-a8158fc8f197","keyword":"机理","originalKeyword":"机理"},{"id":"153ec11f-603a-4340-b72f-a4662fd02da7","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"xyjsclygc200906041","title":"化学法制备片状纳米银粉的研究进展","volume":"38","year":"2009"},{"abstractinfo":"主要介绍利用传统的化学工艺从含50%~99.9%Au的合质金提取高纯金的原理及主要工艺单元的过程控制参数,在此工艺中蒸发剂P、除杂剂S的加入和酸洗工序可以使成品金中的杂质含量均《0.0003%,金含量可达到>99.995%,由于此工艺会产生废水、废气,因此也简要的介绍了相应的处理方法.","authors":[{"authorName":"田治龙","id":"662882e5-c714-44a4-b0e9-90aec9e18c90","originalAuthorName":"田治龙"},{"authorName":"李中宇","id":"250921e7-abe3-416f-aa2b-f55a5865c9eb","originalAuthorName":"李中宇"}],"doi":"10.3969/j.issn.1004-0676.2004.03.003","fpage":"11","id":"edd17530-6c8d-48fa-8393-f6288eabc71b","issue":"3","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"f9fac426-4d28-4676-bcb7-a54bce560cfc","keyword":"湿法冶金","originalKeyword":"湿法冶金"},{"id":"eaa3ab58-1cbc-4777-ae5c-dbd61c09ea99","keyword":"化学法","originalKeyword":"化学法"},{"id":"f82c479f-72c9-44e8-ab9e-c0d24b34913c","keyword":"提取","originalKeyword":"提取"},{"id":"47d61b02-282a-4028-bcad-31eb64f7911b","keyword":"高纯金","originalKeyword":"高纯金"},{"id":"96ec3728-9e5b-43ad-b6f5-88604758a8be","keyword":"工艺","originalKeyword":"工艺"}],"language":"zh","publisherId":"gjs200403003","title":"化学法提取高纯金(>99.995%)的工艺","volume":"25","year":"2004"},{"abstractinfo":"凝固过程中获得细小均匀的等轴晶组织既可以提高材料的强度和硬度,又可以提高其塑性和韧性.晶粒细化是改善铸件质量和后续加工性能的重要途径,化学晶粒细化法由于在细化过程中操作简单,无需改进实验设备,细化效果良好受到科研工作者的重视.结合作者采用化学法对铝及铝合金、纯镍和纯锡晶粒细化的研究工作,综述几种典型有色金属及合金的晶粒细化剂及细化效果,并总结国内外关于化学法细化晶粒的经典理论.最后,总结并展望了化学法细化有色金属及合金的发展趋势.","authors":[{"authorName":"夏天东","id":"e5d08e43-3c36-4a8d-a6d2-8a52ee93d785","originalAuthorName":"夏天东"},{"authorName":"李庆林","id":"63839287-d5fc-40a4-9990-9678fcba782e","originalAuthorName":"李庆林"},{"authorName":"赵文军","id":"8a635637-d4db-49fd-86f6-d1b02a0f7000","originalAuthorName":"赵文军"},{"authorName":"汪婷","id":"8453b667-236e-432f-af11-c448cb9fc7dc","originalAuthorName":"汪婷"},{"authorName":"陈曦","id":"470135a6-1a81-4889-a4af-4ebd366ecc8e","originalAuthorName":"陈曦"}],"doi":"","fpage":"2408","id":"89b2ca8b-ec2d-4f4c-8bdd-5158483c8591","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"fe6e0a68-562d-4f94-b469-bf150126caca","keyword":"有色金属","originalKeyword":"有色金属"},{"id":"942ec9f7-0159-4b6b-a437-52f3298347f0","keyword":"合金","originalKeyword":"合金"},{"id":"68570d0a-ed4e-4130-aeae-b1ae662f3de7","keyword":"凝固组织","originalKeyword":"凝固组织"},{"id":"e3e5c6a2-8620-4d0d-90ab-271de348a838","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"bd974aee-96cc-45d9-8fa3-b985d969e73b","keyword":"化学法","originalKeyword":"化学法"},{"id":"cda7f9b1-ecd7-4108-a530-88666b5a161b","keyword":"细化机理","originalKeyword":"细化机理"}],"language":"zh","publisherId":"zgysjsxb201110010","title":"化学法对有色金属及合金晶粒细化的研究进展","volume":"21","year":"2011"},{"abstractinfo":"主要介绍了化学法制备形状可控纳米银的研究进展,对球形、线状、片状、立方状及树枝状纳米银的合成方法和工艺进行了总结归纳,讨论了影响纳米银形貌的主要因素并提出相应的解决措施.","authors":[{"authorName":"高雯雯","id":"e875edd8-bd4c-4abc-a8da-386a31f09f79","originalAuthorName":"高雯雯"},{"authorName":"兰新哲","id":"f9252b75-1332-4e18-9575-564e7e5c68cf","originalAuthorName":"兰新哲"},{"authorName":"宋永辉","id":"23a2ca6c-61e6-4765-b810-2c849e34df00","originalAuthorName":"宋永辉"},{"authorName":"杨勇","id":"0779f4ff-7160-49d2-a40f-699b1579b02f","originalAuthorName":"杨勇"},{"authorName":"邢相栋","id":"a753463a-3043-40c4-af45-0b29a9371645","originalAuthorName":"邢相栋"}],"doi":"10.3969/j.issn.1004-0676.2009.02.013","fpage":"64","id":"1b3b5dbd-ae82-4bd5-ad12-668686a70d75","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"20cb2af9-da89-408e-8521-8333f4cd6221","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"07af8e49-d975-4402-bc14-5934d5551053","keyword":"化学法","originalKeyword":"化学法"},{"id":"c16e2993-6c09-436c-b0fd-a28cc14b2d50","keyword":"纳米银","originalKeyword":"纳米银"},{"id":"7d82f850-a81d-42f2-a903-af34fd24cd4a","keyword":"形状可控","originalKeyword":"形状可控"}],"language":"zh","publisherId":"gjs200902013","title":"化学法制备形状可控纳米银的研究进展","volume":"30","year":"2009"},{"abstractinfo":"化学法制备超细银粉是目前研究的一个热点,作者在总结前人研究成果的基础上,系统地阐述了超细银粉的分类、化学制备原理及工艺,并对液相化学方法制备超细银粉的技术研究现状进行了综述,对超细银粉制备过程中的主要影响因素进行了分析.","authors":[{"authorName":"宋永辉","id":"0cb57b95-6bdd-43aa-b9a5-8bf49c3a1923","originalAuthorName":"宋永辉"},{"authorName":"梁工英","id":"3482642a-808e-42fe-8721-f5266837983a","originalAuthorName":"梁工英"},{"authorName":"兰新哲","id":"8773c05b-dcfc-4b86-8e77-0d72724b47b5","originalAuthorName":"兰新哲"}],"doi":"10.3969/j.issn.1004-0676.2006.04.013","fpage":"67","id":"56248b63-8c29-4f66-8a1c-001cf46c83dc","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"b6bf6ac1-b335-4e65-ab4e-42e82375db27","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"f22e385a-c33c-4673-a1ba-53196e2cb5cf","keyword":"化学法","originalKeyword":"化学法"},{"id":"6b5ead69-27f2-47c3-b005-efd4d65d2c86","keyword":"超细银粉","originalKeyword":"超细银粉"},{"id":"6a39d679-046d-49fc-b269-cae1809ce719","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"gjs200604013","title":"化学法制备超细银粉的研究进展","volume":"27","year":"2006"},{"abstractinfo":"石墨烯作为一种新型的二维纳米材料,具有优异的透光率和导电性。与传统的铟锡氧化物(ITO)相比,石墨烯具有更高的导电性、较好的柔韧性和丰富的资源,因此石墨烯在透明导电薄膜领域有着较好的应用前景。主要对国内外近3年来化学法制备石墨烯基透明导电薄膜的最新研究成果进行综述。并以成膜方法的不同为区分,重点介绍了真空抽滤法、旋涂法、自组装、Langmuir-Blodgett (LB)法、喷涂法制备石墨烯基透明导电薄膜的最新研究成果。同时,对薄膜的硝酸处理、掺杂进行了介绍。最后,就目前化学法制备石墨烯基透明导电薄膜所面临的问题进行了讨论,并对石墨烯透明导电薄膜的未来发展进行了展望。","authors":[{"authorName":"李秀强","id":"36363649-a402-4da7-a320-2265325a25f7","originalAuthorName":"李秀强"},{"authorName":"张东","id":"2b031692-5306-48a9-a934-3175cc580ade","originalAuthorName":"张东"}],"doi":"10.3969/j.issn.1001-9731.2014.增刊(Ⅰ).003","fpage":"12","id":"d5cc1e27-f86a-4115-8c2b-639e2cd69ac4","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"93e88b3b-9640-4435-bf01-af8327398412","keyword":"化学法","originalKeyword":"化学法"},{"id":"8a5c01fe-5c5f-4236-9e8b-892395ab1f18","keyword":"氧化石墨烯","originalKeyword":"氧化石墨烯"},{"id":"29e54bff-0435-43c2-9914-de297001208a","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"cd3811cb-c8cb-419d-ae92-bdd243ffe7c2","keyword":"透明导电薄膜","originalKeyword":"透明导电薄膜"}],"language":"zh","publisherId":"gncl2014z1003","title":"化学法制备石墨烯基透明导电薄膜的研究进展","volume":"","year":"2014"},{"abstractinfo":"针对传统化学法处理混合电镀废水所存在的缺点,提出新的碱性条件下电镀废水处理工艺.试验研究和实际应用结果表明:该工艺是处理混合电镀废水的有效方法.","authors":[{"authorName":"彭昌盛","id":"d011a0cf-340c-4bd9-819b-7e0c8e70a959","originalAuthorName":"彭昌盛"},{"authorName":"孟洪","id":"52ab06e6-e5b0-4059-8436-b819aaf59213","originalAuthorName":"孟洪"},{"authorName":"张景来","id":"ef10b489-9bc1-4732-8770-21ec69c82572","originalAuthorName":"张景来"},{"authorName":"汪莉","id":"904198ad-7dfd-4c92-a76f-71f40de1f5ba","originalAuthorName":"汪莉"},{"authorName":"宋存义","id":"de906c90-6abf-4191-b81d-a235598ccfec","originalAuthorName":"宋存义"}],"doi":"10.3969/j.issn.1004-227X.2001.04.013","fpage":"51","id":"9f8a202e-defa-4d79-a5e3-04eea8209c11","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"8e97c378-e782-4594-a735-d33d601c30b6","keyword":"电镀废水处理","originalKeyword":"电镀废水处理"},{"id":"ca53580f-10b2-4215-be0f-1375e745039d","keyword":"化学法","originalKeyword":"化学法"},{"id":"60f3f585-597d-4b97-b147-ce71670daf5f","keyword":"碱性","originalKeyword":"碱性"}],"language":"zh","publisherId":"ddyts200104013","title":"碱性条件下化学法处理混合电镀废水","volume":"20","year":"2001"},{"abstractinfo":"用化学法在Ni-5%W基底上制备Gd掺杂CeO2膜.以乙酸铈((CH3CO2)3Ce(Ⅲ))、硝酸钆(GdN3O9)为起始原料,按照阳离子Ce3+:Gd3+为4:1的比例溶解于丙酸(C2H5COOH)中制成前驱液.将前驱液旋涂在Ni-5%W基底上,在4%H2/Ar气氛下进行1100℃热处理,形成立方织构的Gd掺杂CeO2膜.采用XRD和SEM对不同旋涂转速工艺制备的CeO2膜进行晶体结构和微观形貌的检测和分析.以总阳离子浓度为1.2 mol/L前驱液经过3000 r/min,60 s的涂覆工艺,经过二次涂覆和1100℃热处理的CeO2膜结晶程度高,无裂纹,有立方织构.Ce3+在4%H2/Ar还原性气氛里可以转变为Ce4+.","authors":[{"authorName":"李英楠","id":"273c3299-5182-41a4-af64-f5997c81999e","originalAuthorName":"李英楠"},{"authorName":"李凤华","id":"c730bd3d-fbfd-4111-b924-8bda6cfc4a9d","originalAuthorName":"李凤华"},{"authorName":"罗清威","id":"0c78c3f5-08a7-47d5-8fd1-7a8c9353faa5","originalAuthorName":"罗清威"},{"authorName":"樊占国","id":"bd4c3f74-3d08-40f8-a7a0-605df2212bb1","originalAuthorName":"樊占国"},{"authorName":"李成山","id":"77290a8f-926e-4e3c-8c13-dcff1475b8e6","originalAuthorName":"李成山"},{"authorName":"卢亚峰","id":"263022ea-ae75-4b3d-bcc2-a2eea1d2ecf9","originalAuthorName":"卢亚峰"}],"doi":"","fpage":"443","id":"53770cb3-5631-44e7-9570-73ff35e14fd5","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f9c0f576-c3a9-4cb0-9ffe-cbdce7f68893","keyword":"化学法","originalKeyword":"化学法"},{"id":"e48ede14-75dc-4ade-9b0e-dcfb8be33de8","keyword":"Ni-5%W基底","originalKeyword":"Ni-5%W基底"},{"id":"9a00064b-c52f-4d8b-b4b9-f54099664cdd","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"f3162ba9-a4ea-46e0-8dbf-bfc8195dcf41","keyword":"CeO2","originalKeyword":"CeO2"}],"language":"zh","publisherId":"xyjsclygc201502036","title":"化学法在Ni-5%W基底上制备Gd掺杂CeO2膜","volume":"44","year":"2015"},{"abstractinfo":"用化学溶液沉积法,尤其是金属有机物沉积法(MOD)制备第二代超导带材,包括缓冲层和YBaCuO涂层,在当前超导带材研究中具有重要的意义.因为其成本低、操作简单、便于规模化生产,可能成为制备高温超导带材最有前途的方法.文内详述了用化学气相沉积,化学溶液沉积,电泳共沉积以及超声雾化热分解等方法制备YBaCuO超导涂层的国内外进展,介绍了在LaAlO3单晶上以及金属基带上制备钙钛矿结构缓冲层的主要种类和特征,也介绍了当前研究的热点之一,导电缓冲层的作用、制备方法和研究进展.","authors":[{"authorName":"樊占国","id":"ba0f4d4a-98be-4eb1-9cc8-3e657d5a8639","originalAuthorName":"樊占国"},{"authorName":"李英楠","id":"ff249f9e-0884-4397-9802-9259ecebeabd","originalAuthorName":"李英楠"},{"authorName":"张聪聪","id":"f8086b40-b1e6-4369-89f4-79ee5d1b3d33","originalAuthorName":"张聪聪"},{"authorName":"李凤华","id":"f91ff9fe-bcc7-41b5-83fe-fac42763ee4c","originalAuthorName":"李凤华"}],"doi":"10.3969/j.issn.1671-6620.2009.04.006","fpage":"263","id":"ff574a2a-02a1-47e9-a5a2-5ac97e127b99","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"4fccfdd6-1955-4377-8be8-b62281747a17","keyword":"化学法","originalKeyword":"化学法"},{"id":"8c0ec7cb-61a7-4422-b5dc-1a1c420f2695","keyword":"缓冲层","originalKeyword":"缓冲层"},{"id":"04155edb-6d07-4a57-8e3d-9011e106921a","keyword":"导电缓冲层","originalKeyword":"导电缓冲层"},{"id":"583740c6-6d62-418f-8ccc-94753e402657","keyword":"YBaCuO涂层导体","originalKeyword":"YBaCuO涂层导体"}],"language":"zh","publisherId":"clyyjxb200904006","title":"全化学法制备缓冲层和YBaCuO超导涂层","volume":"8","year":"2009"}],"totalpage":3019,"totalrecord":30187}