{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过一步水热法分别合成了α-NiS、Co3S4和CoNi2S4纳米介孔电极材料,并研究了其电化学性能.X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究表明,介孔硫化物是由单相纳米颗粒堆叠组装而成,其中二元系的CoNi2S4由纳米片自组装形成了具有皱褶表面的微球形貌.电化学性能研究表明,二元系的CoNi2S4比α-NiS、Co3S4具有更高的比电容、更佳的倍率特性和优异的循环稳定性.在扫描速率为5 mV/s时,CoNi2S4材料在6 mol/L KOH电解液中比电容高达1678.3 F/g,优于α-NiS (787.4 F/g)和Co3S4(1532.7 F/g),在扫描速率从5 mV/s增加到100 mV/s时,其电容保持率为45.8%,比α-NiS (30.2%)和Co3S4(29.3%)高出约15%.在15A/g的电流密度下,经过900次循环充-放电后,二元系的CoNi2S4的电容仍保持在96.3%,库伦效率保持在94.3%左右,说明镍钴双金属硫化物具有优异的循环稳定性能和充放电可逆性.","authors":[{"authorName":"尤春琴","id":"871ff89f-2f43-43fd-a876-9c8b324f1348","originalAuthorName":"尤春琴"},{"authorName":"罗民","id":"885b069a-4ad5-48b0-8293-2fc28ac63bdb","originalAuthorName":"罗民"},{"authorName":"阚夏梅","id":"bbd792c1-e21b-48dd-a06d-2fdfad6be204","originalAuthorName":"阚夏梅"},{"authorName":"付蓉蓉","id":"cec2d95f-588a-4845-935e-0eb13aeff06b","originalAuthorName":"付蓉蓉"},{"authorName":"梁斌","id":"e932da80-fc2b-4e04-9ca5-2872d6a3a833","originalAuthorName":"梁斌"}],"doi":"10.11944/j.issn.1000-0518.2015.12.150181","fpage":"1455","id":"db01cf7a-e3d7-4dc2-a8b2-a5a510af8cb6","issue":"12","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"75cd6467-2694-4448-aa7e-bade5e99afc3","keyword":"镍钴金属硫化物","originalKeyword":"镍钴金属硫化物"},{"id":"c6c9b173-8a25-42a2-ad4a-b6b4297ad892","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"a8c76c83-5db5-4df0-9bad-a79a2376e2be","keyword":"皱褶状微球","originalKeyword":"皱褶状微球"},{"id":"b21b511c-b375-4a67-bf16-ce731906747b","keyword":"水热法","originalKeyword":"水热法"},{"id":"a29f6357-dbc1-4268-b384-83725c8c1bb5","keyword":"介孔电极材料","originalKeyword":"介孔电极材料"}],"language":"zh","publisherId":"yyhx201512016","title":"皱褶表面介孔镍钴硫化物微球的制备及其超电性能","volume":"32","year":"2015"},{"abstractinfo":"金属硫化物纳米材料因其具有优异的光电特性而成为太阳能量转换、光电器件、催化等前沿领域的研究热点。通过对金属硫化物纳米结构的设计及其薄膜材料的可控合成和组装,可使其在太阳能利用和光电子集成器件等应用上发挥更大作用。","authors":[],"doi":"","fpage":"46","id":"90abe9a7-2f97-4f3a-a38a-8c8f715c1835","issue":"8","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"c4aa6dd0-cd85-4b9e-beac-e91ece541a40","keyword":"金属硫化物","originalKeyword":"金属硫化物"},{"id":"8501ce88-efb3-4fd1-9987-9f6c9b7b697a","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"a03e3351-222a-4170-a9b6-78adac4b3ee5","keyword":"薄膜性能","originalKeyword":"薄膜性能"},{"id":"d22637d3-e54f-45ab-9670-646b66a2c786","keyword":"太阳能利用","originalKeyword":"太阳能利用"},{"id":"9bea22fb-11a0-4702-bc19-063423c3d6f0","keyword":"能量转换","originalKeyword":"能量转换"},{"id":"b112491e-3de3-4a22-8204-414dc51fae5e","keyword":"光电特性","originalKeyword":"光电特性"},{"id":"48a86b67-fd82-4a77-a030-4fbd52e05a89","keyword":"光电器件","originalKeyword":"光电器件"},{"id":"ff2e2541-713a-4ecf-8d7d-3d74d03792d5","keyword":"可控合成","originalKeyword":"可控合成"}],"language":"zh","publisherId":"zgcljz201208012","title":"金属硫化物纳米薄膜性能研究获进展","volume":"31","year":"2012"},{"abstractinfo":"以金属硫化物半导体为催化剂,以可见光为光源光催化分解硫化氢回收硫和氢气工艺,将太阳能利用、硫化氢的处理及制氢有机结合,极具发展前景.从三元金属硫化物、改性三元金属硫化物和多元金属硫化物3个方面综述了用于光催化分解硫化氢的多元金属硫化物,并指出了光催化分解硫化氢过程中存在的问题.","authors":[{"authorName":"吕宏飞","id":"967b63c0-c3a0-49ff-88d6-8064cb9fa073","originalAuthorName":"吕宏飞"},{"authorName":"李锦书","id":"e0cbd04c-267f-40df-a140-81f0bbddd72a","originalAuthorName":"李锦书"},{"authorName":"单雯妍","id":"589bec35-f414-4af9-b031-88aed663ff94","originalAuthorName":"单雯妍"},{"authorName":"白雪峰","id":"40839ae9-b98c-4d1d-b8ae-6481300b3d5c","originalAuthorName":"白雪峰"}],"doi":"","fpage":"51","id":"62dd2390-063e-4b57-9099-b76001842ca8","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d54a6f66-841b-4620-b6fd-a2e91c1362ca","keyword":"光催化","originalKeyword":"光催化"},{"id":"52587f9c-e04c-42ec-be8c-af675ab36015","keyword":"硫化氢","originalKeyword":"硫化氢"},{"id":"e7be91aa-dd3a-4209-bf61-7bf8a8f64712","keyword":"制氢","originalKeyword":"制氢"},{"id":"073872af-5389-4358-a6ab-979b646f3d91","keyword":"多元金属硫化物","originalKeyword":"多元金属硫化物"}],"language":"zh","publisherId":"cldb201211010","title":"多元金属硫化物催化剂及光催化分解硫化氢的研究进展","volume":"26","year":"2012"},{"abstractinfo":"为解决无机类富勒烯纳米化合物的制备过程中存在的技术问题,本文以二硫化钼和二硫化钨为主要原料,采用了剥离-重新堆垛-结构控制这一技术方法,用正丁基锂将上述二硫化物剥离成单层,通过掺杂将金属锰离子引入反应体系中,以将单层二硫化物重新堆垛起来,并进行结构控制.XRD、TEM、HRTEM结果表明,应用上述方法制备出了真空管状多元金属二硫化物纳米化合物;纳米管为多壁管,其微细结构具双层结构特征;并探讨了其形成机理.","authors":[{"authorName":"李国华","id":"c7717bb3-7c78-41b7-9269-2d7e7e9b20b1","originalAuthorName":"李国华"},{"authorName":"曾跃武","id":"3b4cdb75-3e30-4b05-9601-056a1ab14e99","originalAuthorName":"曾跃武"},{"authorName":"宋旭春","id":"09892fc3-372b-411c-903f-57653ecb6dd3","originalAuthorName":"宋旭春"},{"authorName":"夏军保","id":"fcbf1bc7-222d-4c2a-858a-45be3a5293a1","originalAuthorName":"夏军保"},{"authorName":"陈卫祥","id":"d2de63e4-2787-4bc8-8d9a-c81a32f27efb","originalAuthorName":"陈卫祥"},{"authorName":"徐铸德","id":"f1f8ad42-25b5-4246-a452-69d6e3ea32d8","originalAuthorName":"徐铸德"}],"categoryName":"|","doi":"","fpage":"481","id":"0dcd110a-4ec5-4014-8db8-f14321842973","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c7bf3cd8-fc3b-4099-8bf6-74ff4224d345","keyword":"多元金属二硫化物","originalKeyword":"多元金属二硫化物"},{"id":"709df5bc-2d9b-4ead-bc8b-703f7b5f4f47","keyword":" exfoliating-restacking- structure controlling","originalKeyword":" exfoliating-restacking- structure controlling"},{"id":"506980ef-0835-42e4-a85a-02f33eb2d92e","keyword":" nanotube","originalKeyword":" nanotube"},{"id":"add60ba4-efe3-4959-90f1-83f4662afda1","keyword":" structural characteristic","originalKeyword":" structural characteristic"}],"language":"zh","publisherId":"1000-324X_2004_3_3","title":"多元金属二硫化物纳米管的制备与结构特征","volume":"19","year":"2004"},{"abstractinfo":"为解决无机类富勒烯纳米化合物的制备过程中存在的技术问题,本文以二硫化钼和二硫化钨为主要原料,采用了剥离-重新堆垛-结构控制这一技术方法,用正丁基锂将上述二硫化物剥离成单层,通过掺杂将金属锰离子引入反应体系中,以将单层二硫化物重新堆垛起来,并进行结构控制.XRD、TEM、HRTEM结果表明,应用上述方法制备出了真空管状多元金属二硫化物纳米化合物;纳米管为多壁管,其微细结构具双层结构特征;并探讨了其形成机理.","authors":[{"authorName":"李国华","id":"f67f880d-39f4-475d-81a9-e14e013ed839","originalAuthorName":"李国华"},{"authorName":"曾跃武","id":"c27e025f-d1ce-4411-a1fc-c8e56f65016e","originalAuthorName":"曾跃武"},{"authorName":"宋旭春","id":"cb3efa11-5653-4560-92b5-a0b9acf975e3","originalAuthorName":"宋旭春"},{"authorName":"夏军保","id":"43813c3e-0316-417b-af46-fea9376f1526","originalAuthorName":"夏军保"},{"authorName":"陈卫祥","id":"f736b98c-8d63-41b1-8163-79d2cee2ee0b","originalAuthorName":"陈卫祥"},{"authorName":"徐铸德","id":"7a485785-9dcb-49db-a3d7-12f13802dae4","originalAuthorName":"徐铸德"}],"doi":"10.3321/j.issn:1000-324X.2004.03.006","fpage":"481","id":"ee7427e3-be7d-43fb-bc10-59dbcef29f30","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"eafa293d-86e4-4534-9215-78587ec8a61b","keyword":"多元金属二硫化物","originalKeyword":"多元金属二硫化物"},{"id":"4ccb44c0-3011-4561-87d1-05b4db331b76","keyword":"剥离-重新堆垛-结构控制","originalKeyword":"剥离-重新堆垛-结构控制"},{"id":"2cf9b629-1c05-462e-9c4f-a9f883ac6b05","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"80b3b651-26da-4a48-aa10-2ef1890a1b53","keyword":"结构特征","originalKeyword":"结构特征"}],"language":"zh","publisherId":"wjclxb200403006","title":"多元金属二硫化物纳米管的制备与结构特征","volume":"19","year":"2004"},{"abstractinfo":"对系列过渡金属硫化物催化剂上CO还原SO2的反应进行了研究. 结果表明,FeS的催化性能最好,而MnS的催化性能最差,其他几种催化剂的活性顺序依次为CoS>CuS>NiS. 催化剂的活性与硫化物自身的氧化还原能力、所具有的晶相结构及其同SO2的吸附键合作用力有密切的关系. 在硫化物催化剂上,SO2还原的反应机理很可能是贫、富含硫化合物的交替作用机理.","authors":[{"authorName":"胡大为","id":"780af3ab-8f44-4854-b375-147ccd388870","originalAuthorName":"胡大为"},{"authorName":"秦永宁","id":"57ef3c4a-79bd-4cd7-8797-d2f2cf190e8b","originalAuthorName":"秦永宁"},{"authorName":"马智","id":"229dbf35-f29d-42a3-8d4c-bbf170afa93e","originalAuthorName":"马智"},{"authorName":"韩森","id":"9e95d372-2c4a-4bcd-9792-5063ad7a8317","originalAuthorName":"韩森"}],"doi":"","fpage":"425","id":"409efe1c-fb8e-4c49-926d-592d8c287bf1","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"5422a210-5f83-4b6f-aca7-fd52e3bfdea2","keyword":"过渡金属","originalKeyword":"过渡金属"},{"id":"60312876-c5dc-4904-84e2-a45805e30ead","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"743efb73-6a63-485d-97fc-873230c77597","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"08bb683e-82a7-43ab-8e4a-ca28f87d4e23","keyword":"还原","originalKeyword":"还原"},{"id":"7ec175c5-94d1-4fc4-a82e-cad2b8f1d016","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"cuihuaxb200205010","title":"过渡金属硫化物催化剂上SO2的还原","volume":"23","year":"2002"},{"abstractinfo":"选取正丁硫醇、异丁硫醇、正己硫醇和叔辛硫醇为模型硫化物,采用高压釜法研究了以上硫化物在200 ℃~350 ℃时对铜粉、铁粉的腐蚀性.研究发现,硫醇对两种金属粉末的腐蚀性与反应温度以及该硫醇自身的结构有关.温度越高,硫醇的腐蚀性越强;硫醇越容易分解,其腐蚀性也越强.\n\n","authors":[{"authorName":"杨波","id":"ce5a5ec2-67f8-48a9-b0bc-65d99529e9a6","originalAuthorName":"杨波"},{"authorName":"田松柏","id":"3d515446-57a6-4f11-ab0d-9dac93e67b48","originalAuthorName":"田松柏"},{"authorName":"赵杉林","id":"6080921a-3e4a-48c1-a12a-f76bad0ea210","originalAuthorName":"赵杉林"}],"categoryName":"|","doi":"","fpage":"92","id":"6ea46373-7c09-441c-a8c1-83a8a3d74d7f","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d0fc5a59-24ee-4b58-9491-bcb4412b252a","keyword":"铜粉","originalKeyword":"铜粉"},{"id":"890753a1-7cec-41a3-bd4a-c49f696284ef","keyword":"null","originalKeyword":"null"},{"id":"47507da0-6e96-47a9-9280-1e89a045fbc7","keyword":"null","originalKeyword":"null"},{"id":"5e6d62c1-e013-4711-9364-2acb7fa82ba4","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_2_10","title":"金属粉末腐蚀法对硫醇类硫化物腐蚀性的研究","volume":"18","year":"2006"},{"abstractinfo":"选取正丁硫醇、异丁硫醇、正己硫醇和叔辛硫醇为模型硫化物,采用高压釜法研究了以上硫化物在200℃~350℃时对铜粉、铁粉的腐蚀性.研究发现,硫醇对两种金属粉末的腐蚀性与反应温度以及该硫醇自身的结构有关.温度越高,硫醇的腐蚀性越强;硫醇越容易分解,其腐蚀性也越强.","authors":[{"authorName":"杨波","id":"54a9e2b4-f37c-42ac-a7f0-75f99bf2117f","originalAuthorName":"杨波"},{"authorName":"田松柏","id":"67c83547-0786-46ea-8933-82d5843a74d3","originalAuthorName":"田松柏"},{"authorName":"赵杉林","id":"a73f6ffb-1a92-4389-ae5e-7be23ff9b9e3","originalAuthorName":"赵杉林"}],"doi":"10.3969/j.issn.1002-6495.2006.02.004","fpage":"92","id":"3c36d95e-a00e-4226-87b0-b25f0abab549","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"2690f4fa-1b97-4953-a494-4c54869f4fd6","keyword":"铜粉","originalKeyword":"铜粉"},{"id":"041fb151-8cf7-45ec-b4b8-fa891f1662ad","keyword":"铁粉","originalKeyword":"铁粉"},{"id":"52fd791f-1d8f-485d-8b56-411292e9713f","keyword":"硫醇","originalKeyword":"硫醇"},{"id":"18dba359-ae38-4de0-95e0-063569cda962","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200602004","title":"金属粉末腐蚀法对硫醇类硫化物腐蚀性的研究","volume":"18","year":"2006"},{"abstractinfo":"研究了合成镍硫化物的阳极过程。Ni_3S_2,Ni_7S_6和NiS的活性溶解伴随着生成表面产物层,其反应机理与电极电位有关。根据三种不同类型产物层生成规律的电化学研究,Ni溶出表观电子数的测定,以及产物层相组成分析和相的元素分析,认为存在三组平行反应:直接生成HSO_4~-或SO_(4-)~2的反应,生成中间硫化物的反应及生成元素硫的反应,每组反应具有不同的优势发展电位区。NiS_2阳极溶解时,基本上为生成HSO_(4-)或SO_(4-)~2的反应。","authors":[{"authorName":"方兆珩","id":"5d0512b0-9744-4f2b-ab0a-d034ae262521","originalAuthorName":"方兆珩"},{"authorName":"陈家镛","id":"55cd941b-97a0-4d36-9b07-fc9b5f0fb649","originalAuthorName":"陈家镛"}],"categoryName":"|","doi":"","fpage":"463","id":"9145ed4e-0deb-421d-aee9-01b6976eb7c8","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"0a7155e2-3754-4189-8a58-2d3ae0a22dc1","keyword":"镍硫化物","originalKeyword":"镍硫化物"},{"id":"51ff8028-c25d-4bfc-9b7d-c8278439d02d","keyword":"anodic dissolution","originalKeyword":"anodic dissolution"},{"id":"9d92cb37-0a39-4182-a099-ff4685f81b9f","keyword":"electrochemical behaviour","originalKeyword":"electrochemical behaviour"}],"language":"zh","publisherId":"0412-1961_1988_6_6","title":"镍硫化物阳极溶解的电化学研究","volume":"24","year":"1988"},{"abstractinfo":"介绍了无机类富勒烯(Inorganic fullerene-like,简称IF)与过渡金属硫化物(WS2和MoS2)纳米材料的常用合成技术--固-气与气相反应合成方法; 以及用化学复合镀法制备含有IF-WS2纳米颗粒的Ni-P复合镀层的方法.","authors":[{"authorName":"马晓春","id":"1f97d76c-366b-43d7-a36a-33d907998a5b","originalAuthorName":"马晓春"}],"doi":"10.3969/j.issn.1001-3660.2005.06.004","fpage":"11","id":"1b2918f8-64ac-4f60-9618-76c6c91d400c","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"dccddc9d-435d-426f-8223-6a0521678663","keyword":"无机类富勒烯","originalKeyword":"无机类富勒烯"},{"id":"fbaeb079-8ddd-4d90-b8e3-371622c76c33","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"f8989387-d152-4794-bf08-cff5634ed347","keyword":"过渡金属硫化物","originalKeyword":"过渡金属硫化物"},{"id":"8b82aa1f-f91b-4051-9341-172f9802adc0","keyword":"纳米复合化学镀","originalKeyword":"纳米复合化学镀"}],"language":"zh","publisherId":"bmjs200506004","title":"过渡金属硫化物纳米材料化学复合镀层制备方法","volume":"34","year":"2005"}],"totalpage":5947,"totalrecord":59465}